

The stereographic projection P maps the upper half space to the upper half space, and more specifically it maps the sphere $S(r)$ of radius r and center $(0,0,r)$ which sits on the origin $(0,0,0)$, to the plane of points whose last coordinate is r . In other words, it maps the sphere $S(r)$ to the horizontal plane through its center. The equation of $S(r)$ is

$$\frac{x^2 + y^2 + z^2}{2z} = r.$$

Exercise. If we scale the sphere $S(r)$ from the origin by a scale factor $s > 0$, then we get $S(sr)$, that is

$$sS(r) = S(sr).$$

If (x, y, z) is a point on $S(r)$, then $P(x, y, z)$ is defined to be the point (X, Y, r) which is on the straight line joining $(0,0,0)$ to (x, y, z) . From this description we find that

$$P(x, y, z) = (X, Y, Z) = \frac{x^2 + y^2 + z^2}{2z^2}(x, y, z).$$

We also notice that because P preserves direction, the quantity

$$\frac{x^2 + y^2 + z^2}{2z^2} = \frac{X^2 + Y^2 + Z^2}{2Z^2}$$

Is an invariant of P , and similarly for the reciprocal,

$$\frac{2z^2}{x^2 + y^2 + z^2} = \frac{2Z^2}{X^2 + Y^2 + Z^2}.$$

Thus the inverse mapping Q of P is given by

$$Q(X, Y, Z) = (x, y, z) = \frac{2Z^2}{X^2 + Y^2 + Z^2} (X, Y, Z).$$

So as to put this in context, we can consider the generalization of this situation, where we have a foliation of some region of space by surfaces

$$\tilde{S}(t) = t \tilde{S}(1)$$

as the parameter t varies over the positive real numbers. Suppose that $\tilde{S}(t)$ is given by

$$f(x, y, z) = t,$$

Where f is say a continuously differentiable function. In order for these to not intersect we require that $\tilde{S}(1)$ contains precisely one point on each straight line through the origin, and is preferably contained in the upper half

space and a continuously differentiable graph over the plane $z = 0$, so we don't need to worry about topology.

Scaling by $1/t$ we get back from $\tilde{S}(t)$ to $\tilde{S}(1)$, that is $\tilde{S}(1)$ is the set of those $(x/t, y/t, z/t)$ with $f(x, y, z) = t$, which is also by renaming dummy variables, the set of those (x, y, z) with

$$f(tx, ty, tz) = t.$$

But since $\tilde{S}(1)$ is also just the set of those (x, y, z) with

$$f(x, y, z) = 1,$$

And the two conditions defining $\tilde{S}(1)$ must be the same, we see that one implies the other and so

$$f(tx, ty, tz) = t f(x, y, z).$$

This just says that f is homogeneous of degree 1.

We want to generalize the stereographic projection to this situation. We define the generalized stereographic projection \tilde{P} which turns the surface $\tilde{S}(t)$ into the plane of points of the form (X, Y, t) , by just specifying that (X, Y, t) is on the straight line through $(0, 0, 0)$ and (x, y, z) . Explicitly,

$$(X, Y, t) = \frac{t}{z} (x, y, z) = \frac{f(x, y, z)}{z} (x, y, z).$$

Thus it makes sense to set

$$g(x, y, z) = \frac{f(x, y, z)}{z} = f\left(\frac{x}{z}, \frac{y}{z}, 1\right).$$

So g is scale invariant equivalently homogeneous of degree 0, that is $g(sx, sy, sz) = g(x, y, z)$ for $s > 0$, and $\tilde{S}(t)$ is given by $z g(x, y, z) = t$, and

$$\tilde{P}(x, y, z) = (X, Y, Z) = g(x, y, z)(x, y, z).$$

There is a curious ambiguity of notation because (x, y, z) is used to denote both the input of the function g , and the coordinate vector itself. This is really unfortunate, and could be avoided with more refined notation for example fancy parentheses to indicate we are evaluating the function g at that particular input. As it stands, just writing $g(x, y, z)$ could refer to g evaluated at (x, y, z) or the function g multiplied by the vector (x, y, z) . We dearly want to avoid this kind of ambiguity. Let's for now be really French-German instead of depending on the reader to use their discretion. Let's agree to use square brackets when we are evaluating a function at an

input and see how that works out. Thus our equation becomes

$$\tilde{P}[(x, y, z)] = (X, Y, Z) = g[(x, y, z)](x, y, z).$$

Notice that the last coordinate is $Z = gz$, or if we are going to labor over details, $Z = g[(x, y, z)]z$. Although we have been going backwards and forwards on whether we want to start with (x, y, z) or Z , we actually started off with the demand that the point (x, y, z) is on the surface $\tilde{S}[Z]$. Then we wrote Z in terms of (x, y, z) to now assert that (x, y, z) is on the surface $\tilde{S}[gz]$ so that everything is written nicely in terms of an arbitrary point (x, y, z) . We really feel like true mathematicians when we can start with a special case, then figure out the general case from that one. We probably noticed before, that instead of starting with the surfaces $\tilde{S}[t]$, we could have started with the single surface $\tilde{S}[1]$, and then defined $\tilde{S}[t] = t \tilde{S}(1)$. This would lead us to consider what happens if we take weird choices of $\tilde{S}[1]$. However, now we have another plausible starting point, which is to consider any scale invariant function $g[(tx, ty, tz)] = g[(x, y, z)]$ at least for all positive values t . Then we can look at the

surface $\tilde{S}[1]$ which is the set of points (x, y, z) where $g[(x, y, z)]z = 1$, and build up a theory from that starting point. However, we get scale invariant functions by knowing where they are equal to 1. We could think instead of starting with a conical surface called $\tilde{C}[1]$ consisting of a curve of points and all scaling of them so that $\tilde{C}[t] = t\tilde{C}[1]$ for every positive real number t . This is not enough however to define g everywhere. Knowing the level sets of gz gives much more information than just knowing the level set of g , which is necessarily a cone. In the case of standard stereographic projection, $C[1]$ is the surface

$$\frac{x^2 + y^2 + z^2}{2z^2} = 1,$$

Which is just the cone $x^2 + y^2 = z^2$. It is perhaps interesting to note that $C[t]$ is the cone

$$x^2 + y^2 = (2t - 1)z^2.$$

It is obtained from $C[1]$ by scaling along the z direction. It is an exercise in analysis to figure out what kind of family of symmetries exist or do not exist in general. For

now we are just satisfied that a single level surface of gz determines the function g , by homogeneity, and inside a level surface of gz are the flat level curves of z or equivalently level curves of g .

In any case, for the moment we can leave those as homework investigations for pure math REUs.

The inverse \tilde{Q} of \tilde{P} is given by

$$\begin{aligned}\widetilde{Q}[(X, Y, Z)] &= (x, y, z) = \frac{1}{g[(x, y, z)]}(X, Y, Z) \\ &= \frac{1}{g[(X, Y, Z)]}(X, Y, Z).\end{aligned}$$

Our project now is to compute the first derivative of the mapping \tilde{P} , and thus see how \tilde{P} behaves locally since the first derivative gives us the linear approximation.

Let's then differentiate the equation

$$\widetilde{P}[(x, y, z)] = (X, Y, Z) = g[(x, y, z)](x, y, z).$$

To get a good look at the derivative, let's write our coordinates $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and $\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$ as column vectors

We have

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = g \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

and we can compute the matrix of partial derivatives

$$D \tilde{P} = \begin{pmatrix} \partial_x X & \partial_y X & \partial_z X \\ \partial_x Y & \partial_y Y & \partial_z Y \\ \partial_x Z & \partial_y Z & \partial_z Z \end{pmatrix}.$$

the linear approximation to \tilde{P} is

$$\tilde{P} \begin{pmatrix} x + \delta x \\ y + \delta y \\ z + \delta z \end{pmatrix} \approx \tilde{P} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + D \tilde{P} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix}$$

Where the error tends to zero faster than the vector

$\begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix}$. In other words, its size is $o(\sqrt{\delta x^2 + \delta y^2 + \delta z^2})$.

For this purpose, because we are fundamentally interested in the coordinate $Z = gz$, we start by using the decomposition

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = gz \begin{pmatrix} x/z \\ y/z \\ 1 \end{pmatrix}$$

Using the product rule, we obtain the matrix

$$\begin{aligned} D \tilde{P} &= \begin{pmatrix} x/z \\ y/z \\ 1 \end{pmatrix} (\partial_x (gz) \ \partial_y (gz) \ \partial_z (gz)) \\ &+ gz \begin{pmatrix} 1/z & 0 & -x/z^2 \\ 0 & 1/z & -y/z^2 \\ 0 & 0 & 0 \end{pmatrix} \end{aligned}$$

Where the first term is defined by matrix multiplication. Let's pull out a factors $1/z$ again to write this as

$$\frac{1}{z} \begin{pmatrix} x \\ y \\ z \end{pmatrix} (\partial_x (gz) \ \partial_y (gz) \ \partial_z (gz)) + g \begin{pmatrix} 1 & 0 & -x/z \\ 0 & 1 & -y/z \\ 0 & 0 & 0 \end{pmatrix}$$

Right-multiplying this by $\begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix}$, we get

$$\begin{aligned}
 D \tilde{P} \begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix} &= \begin{pmatrix} x/z \\ y/z \\ 1 \end{pmatrix} (\partial_x(gz) \ \partial_y(gz) \ \partial_z(gz)) \begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix} \\
 &+ g \begin{pmatrix} 1 & 0 & -x/z \\ 0 & 1 & -y/z \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix}.
 \end{aligned}$$

The first term can if we prefer be written in terms of the gradient $\nabla(gz)$ of gz and the dot product, instead of matrix multiplication.

$$\begin{pmatrix} x/z \\ y/z \\ 1 \end{pmatrix} \cdot \begin{pmatrix} \partial_x(gz) \\ \partial_y(gz) \\ \partial_z(gz) \end{pmatrix} \cdot \begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix}$$

The gradient of a function is always perpendicular to the level sets of the function, so this is going to vanish

precisely when $\begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix}$ is tangent to the surface $\tilde{S}[gz]$, .

The map \tilde{P} is said to be *conformal* if the matrix $D \tilde{P}$ is

orthogonal. We can ask whether this ever happens for any choice of g . Write

$$\begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix} = \nabla(gz) = \begin{pmatrix} \partial_x(gz) \\ \partial_y(gz) \\ \partial_z(gz) \end{pmatrix}.$$

Then $D \tilde{P} \begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix}$

$$= \begin{pmatrix} x/z \\ y/z \\ 1 \end{pmatrix} \begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix} \cdot \begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix} + g \begin{pmatrix} 1 & 0 & -x/z \\ 0 & 1 & -y/z \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix}.$$

Knowing that $\begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix}$ is tangent to $\tilde{S}[gz]$ if and only if

$$\begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix} \cdot \begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix} = 0, \quad \text{we see that } D \tilde{P} \begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix} \text{ has}$$

vanishing third component if $\begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix}$ is in the tangent plane of $\tilde{S}[gz]$.

From this it is obvious already that if

We are going to compute this for three choices of the vector $\begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix}$, namely

$$\begin{pmatrix} -V_y \\ V_x \\ 0 \end{pmatrix}, \quad \begin{pmatrix} V_x \\ V_y \\ -(V_x^2 + V_y^2)/V_z \end{pmatrix}, \quad \begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix}.$$

We notice that these are pairwise orthogonal. The first two vectors evaluated at the point $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ span the tangent plane of the surface $\tilde{S}[gz]$ at $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$, and the last vector $\begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix}$ is the normal.

We compute

$$D \tilde{P} \begin{pmatrix} -V_y \\ V_x \\ 0 \end{pmatrix} = g \begin{pmatrix} -V_y \\ V_x \\ 0 \end{pmatrix}$$

Moreover,

$$D \tilde{P} \begin{pmatrix} V_x \\ V_y \\ -\frac{V_x^2 + V_y^2}{V} \\ z \end{pmatrix} = g \begin{pmatrix} V_x + \frac{x}{z} \frac{(V_x^2 + V_y^2)}{V_z} \\ V_y + \frac{y}{z} \frac{(V_x^2 + V_y^2)}{V_z} \\ 0 \end{pmatrix}$$

$$= g \begin{pmatrix} V_x \\ V_y \\ 0 \end{pmatrix} + g \frac{(V_x^2 + V_y^2)}{z V_z} \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}.$$

We want to know the conditions on g which will ensure that $D \tilde{P}$ maps the first two vectors to orthogonal vectors. This happens when

$$\begin{pmatrix} -V_y \\ V_x \\ 0 \end{pmatrix} \cdot \left(\begin{pmatrix} V_x \\ V_y \\ 0 \end{pmatrix} + \frac{(V_x^2 + V_y^2)}{z V_z} \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \right) = 0,$$

This boils down to

$$\frac{(V_x^2 + V_y^2)}{V_z} (-x V_y + y V_x) = 0.$$

In other words, if V_z and at least one of V_x, V_y are non-zero, then $x V_y = y V_x$. Away from the planes where x, y vanish, there is a function W such that

$$V_x = z W, \quad V_y = y W.$$

Now $D \tilde{P}$ scales the length of $\begin{pmatrix} -V_y \\ V_x \\ 0 \end{pmatrix}$ by $|g|$. If it is to be orthogonal on the tangent plane to the surface

$\tilde{S}[gz]$, then it must scale the vector $\begin{pmatrix} V_x \\ V_y \\ -(V_x^2 + V_y^2)/V_z \end{pmatrix}$ by $|g|$ as well. Thus the two vectors

$$\begin{pmatrix} V_x \\ V_y \\ -(V_x^2 + V_y^2)/V_z \end{pmatrix}, \quad \begin{pmatrix} V_x \\ V_y \\ 0 \end{pmatrix} + \frac{(V_x^2 + V_y^2)}{z V_z} \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

Must have the same length. Rewriting these in terms of W , and writing we see that

$$\begin{pmatrix} x \\ y \\ -\frac{(x^2 + y^2)}{V_z} \end{pmatrix}, \quad \left(1 + \frac{W(x^2 + y^2)}{z V_z} \right) \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

Must have the same length. This gives

$$\begin{aligned}
& x^2 + y^2 + \frac{(x^2 + y^2)^2}{V_z^2} \\
&= (x^2 + y^2) \left(1 + \frac{W(x^2 + y^2)}{z V_z} \right)^2.
\end{aligned}$$

This immediately simplifies to

$$1 + \frac{(x^2 + y^2)}{V_z^2} = \left(1 + \frac{W(x^2 + y^2)}{z V_z} \right)^2.$$

Then to

$$\frac{(x^2 + y^2)}{V_z^2} = \frac{2W(x^2 + y^2)}{z V_z} + \frac{W^2(x^2 + y^2)^2}{z^2 V_z^2}.$$

Clearing denominators gives

$$(x^2 + y^2)z^2 = 2W(x^2 + y^2)zV_z + W^2(x^2 + y^2)^2$$

Hence

$$V_z = \frac{z}{2W} - \frac{W(x^2 + y^2)}{2z}$$

We have found the formulas which make \tilde{P} a conformal transformation when restricted to each of the surfaces $\tilde{S}(r)$, namely

$$\begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix} = \begin{pmatrix} xW \\ yW \\ W(x^2 + y^2) \end{pmatrix} - \left(\frac{z}{2W} - \frac{W(x^2 + y^2)}{2z} \right) \nabla (gz) \quad (1)$$

Let's check the case of the stereographic projection

$$gz \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{x^2 + y^2 + z^2}{2z}.$$

We see that

$$\nabla (gz) = \begin{pmatrix} x/z \\ y/z \\ \frac{1}{2} - \frac{(x^2 + y^2)}{2z^2} \end{pmatrix}.$$

Hence we set $w = 1/z$, and this works perfectly. We are interested more generally in the choices of W for which the equation (1) has a solution.

We notice that we can integrate the equation

$$\nabla_x (gz) = x/z$$

Now

$$\partial_x(gz) = xW, \quad \partial_y(gz) = yW.$$

Hence

$$(y \partial_x - x \partial_y)(gz) = 0.$$

However, changing to cylindrical polars, we have that

$$x = r \cos \theta, \quad y = r \sin \theta,$$

$$\partial_r = \cos \theta \partial_x + \sin \theta \partial_y$$

$$\partial_\theta = -r \sin \theta \partial_x + r \cos \theta \partial_y.$$

Which we can write

$$\begin{pmatrix} \partial_r \\ \partial_\theta \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{pmatrix} \begin{pmatrix} \partial_x \\ \partial_y \end{pmatrix}$$

And inversely,

$$\begin{pmatrix} \partial_x \\ \partial_y \end{pmatrix} = \begin{pmatrix} \cos \theta & \frac{-\sin \theta}{r} \\ \sin \theta & \frac{\cos \theta}{r} \end{pmatrix} \begin{pmatrix} \partial_r \\ \partial_\theta \end{pmatrix}$$

$$(y \partial_x - x \partial_y) = -\partial_\theta.$$

We discover that gz is independent of the angle θ .

Thus $gz = f[(r, z)]$, for some function f . Now

$$(x \partial_x + y \partial_y)(gz) = (x^2 + y^2)W.$$

Since

$$x \partial_x + y \partial_y = r \partial_r$$

We can write the equation as

$$r \partial_r f = r^2 W.$$

So in particular W is also independent of the angle θ .

After this change of variables,

$$\partial_r f = r W[(r, z)].$$

We know however, that W must be homogeneous of degree -1 . It is obtained by dividing components of the scale invariant function $\nabla(gz)$ by coordinate functions which are homogeneous of degree 1 . Indeed,

$$W[(tr, tz)] = \frac{W[(r, z)]}{t}.$$

Let's leave this as an exercise for later, and go the last mile, and see whether the mapping \tilde{P} is ever conformal on a region of space. For this we need to compute

$$\begin{aligned} D \tilde{P} \begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix} \\ = (V_x^2 + V_y^2 + V_z^2) \begin{pmatrix} x/z \\ y/z \\ 1 \end{pmatrix} \\ + g \begin{pmatrix} V_x - \left(\frac{x}{z}\right) V_z \\ V_y - \left(\frac{y}{z}\right) V_z \\ 0 \end{pmatrix}. \end{aligned}$$

Let's plug in our solutions for V_x , V_y , V_z .

Let's look at the well known case of the stereographic projection.

$$gz = \frac{x^2 + y^2 + z^2}{2z}$$

$$\begin{pmatrix} \partial_x(gz) \\ \partial_y(gz) \\ \partial_z(gz) \end{pmatrix} = \begin{pmatrix} x/z \\ y/z \\ \frac{1}{2} - \frac{x^2 + y^2}{2z^2} \end{pmatrix}.$$

We compute

$$V_x^2 + V_y^2 + V_z^2$$

$$= \frac{x^2 + y^2}{z^2} + \frac{1}{4} - \frac{x^2 + y^2}{2z^2} + \left(\frac{x^2 + y^2}{2z^2} \right)^2.$$

This is just

$$\left(\frac{x^2 + y^2 + z^2}{2z^2} \right)^2.$$

Putting the terms together yields

$$\left(\frac{x^2 + y^2 + z^2}{2z^2} \right)^2 \begin{pmatrix} 2x/z \\ 2y/z \\ 1 \end{pmatrix}$$

We really need to stare at this calculation and understand it better. It is very upsetting that whilst a single change in sign would lead to this vector being in

the direction $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, and the mapping \tilde{P} being conformal

on space as well as when restricted to the sphere $S(r)$, the signs just do not seem to be working out today. It might be that we need to complexify something or it might be that we made a mistake or it might just be a fact of life that this is tantalizingly close but no cigar.