The stereographic projection P maps the upper half
space to the upper half space, and more specifically it
maps the sphere S(r) of radius r and center (0,0, 7)
which sits on the origin (0,0,0), to the plane of points
whose last coordinate is . In other words, it maps the
sphere S(r) to the horizontal plane through its center.
The equation of S(7) is

x? 4+ y? + 2?2
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Exercise. If we scale the sphere S(r) from the origin by

= T.

a scale factor s > 0, then we get S(sr), thatis
sS(r) = S(sr).

If (x,y,2z) isapointon S(r), thenP(x,y,z) is
defined to be the point (X,Y,r) which is on the straight
line joining (0,0,0) to (x,y,z). From this description we
find that

x? + y? + z°
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We also notice that because P preserves direction, the

P(x,y,z) =(X,Y,Z) = (x,y,2).

quantity



x> +y*+z2 X2+ Y*+ 77
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Is an invariant of P, and similarly for the reciprocal,

27° 272

x2+y2+2z72  X24Y2472°

Thus the inverse mapping Q of P is given by

2
X2 +Y2+ 72

So as to put this in context, we can consider the

QX Y,Z2) = (x,y,2z) =

X,Y,2).

generalization of this situation, where we have a
foliation of some region of space by surfaces

S(i) = tS(1)

as the parameter t varies over the positive real
numbers. Suppose that S(t) is given by

f(x,y,Z) = t’

Where f is say a continuously differentiable function. In
order for these to not intersect we require that S(1)
contains precisely one point on each straight line through
the origin, and is preferably contained in the upper half



space and a continuously differentiable graph over the
plane z = 0, so we don’t need to worry about topology.

Scaling by 1/t we get back from S(¢t) to S(1), thatis
S(1) is the set of those (x/t , y/t , z/t) with
f(x,y,z) = t, whichisalso by renaming dummy
variables, the set of those (x,y,z) with

f(tx, ty, tz) = t.
But since S(1) is also just the set of those (x,y,z) with

fxyz) = 1,

And the two conditions defining S(1) must be the same,
we see that one implies the other and so

f(tx, ty, tz) = tf(x,vy,2).

This just says that f is homogeneous of degree 1.

We want to generalize the stereographic projection to
this situation. We define the generalized stereographic
projection P which turns the surface S(t) into the
plane of points of the form (X,Y,t), by just specifying
that (X,Y,t) is on the straight line through (0,0,0) and
(x,v,z). Explicitly,



&y, ot ) =Gy = 2 ey

Thus it makes sense to set

) )
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f(x,y,2) X y
g(x:}’»z) — ~ :f( 1)
So g is scale invariant equivalently homogeneous of
degree 0, thatis g(sx,sy,sz) = g(x,y,z) fors > 0,
and S(t) isgivenby z g(x,y,z) = t, and

P(x,y,2)=(X,Y,Z2) = g(x,y,2)(x,y,2).

There is a curious ambiguity of notation because (x, y, z)
is used to denote both the input of the function g, and
the coordinate vector itself. This is really unfortunate,
and could be avoided with more refined notation for
example fancy parentheses to indicate we are evaluating
the function g at that particular input. As it stands, just
writing g(x,y, z) could refer to g evaluated at (x, y, z)
or the function g multiplied by the vector (x,y,z). We
dearly want to avoid this kind of ambiguity. Let’s for
now be really French-German instead of depending on
the reader to use their discretion. Let’s agree to use
square brackets when we are evaluating a function at an



input and see how that works out. Thus our equation
becomes

Pl(x,y,2)]=(XY,2) = gllx,y,2)] (x,y,2).

Notice that the last coordinate is Z = gz, orif we are
going to labor over details, Z = g[(x,y,z)]z. Although
we have been going backwards and forwards on whether
we want to start with (x,y,z) or Z, we actually started
off with the demand that the point (x,y, z) is on the
surface S[Z]. Then we wrote Z in terms of (x,y, z) to
now assert that (x,y,z) ison the surface S[gz] so
that everything is written nicely in terms of an arbitrary
point (x,y,z). Wereally feel like true
mathematicians when we can start with a special case,
then figure out the general case from that one. We
probably noticed before, that instead of starting with
the surfaces S[t], we could have started with the single
surface S[1], and then defined S[t] =t S(1). This
would lead us to consider what happens if we take weird
choices of S[1]. However, now we have another
plausible starting point, which is to consider any scale
invariant function g[(tx, ty,tz)] = g[(x,y,z)] atleast
for all positive values t. Then we can look at the



surface S[1] which is the set of points (x,y, z) where
gl(x,y,z)]z =1, and build up a theory from that
starting point. However, we get scale invariant
functions by knowing where they are equalto 1. We
could think instead of starting with a conical surface
called C[1] consisting of a curve of points and all scaling
of them so that C[t] = tC[1] for every positive real
number t. This is not enough however to define g
everywhere. Knowing the level sets of gz gives much
more information than just knowing the level set of g,
which is necessarily a cone. In the case of standard
stereographic projection, C[1] isthe surface

x? +y?% + z2
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Which is just the cone x? + y? = z2. Itis perhaps

interesting to note that C[t] is the cone
x?+y?= (2t-1)z

It is obtained from C[1] by scaling along the z direction.
It is an exercise in analysis to figure out what kind of
family of symmetries exist or do not exist in general. For



now we are just satisfied that a single level surface of gz
determines the function g, by homogeneity, and inside
a level surface of gz are the flat level curves of z or
equivalently level curves of g.

In any case, for the moment we can leave those as
homework investigations for pure math REUs.

The inverse Q of P is given by

1
Gey, 0] 1)

X,Y,2).

QX Y,2)] =(xy2) = p

~ gl(X,Y, D]

Our project now is to compute the first derivative of the
mapping P, and thus see how P behaves locally since
the first derivative gives us the linear approximation.
Let’s then differentiate the equation

—~—

P[(x,y,2)]=X,Y,Z) = g[(x,y,2)](x,y, z).



To get a good look at the derivative, let’s write our

X X
coordinates (y) and (Y) as column vectors

Z Z

()=

and we can compute the matrix of partial derivatives

0. X 9,X 0,X
Di5 — axY ayY 6ZY
0,7 0,7 0,Y

We have

Z

the linear approximationto P is

o) e[ e G (2)

Where the error tends to zero faster than the vector

ox
(5)1). In other words, its size is 0(\/5362 + 6y? + 522).
6z



For this purpose, because we are fundamentally
interested in the coordinate Z = gz, we start by using
the decomposition

X xX/z
(1) = o (29
Z 1

Using the product rule, we obtain the matrix

3 xX/z
DP= <y/z> (0x (g2) 9, (g2) 9, (92))
1

1/z 0 —x/z?
+ 9z 0 1/z —y/z*
0 0 0

Where the first term is defined by matrix multiplication.
Let’s pull out a factors 1/z again to write this as

e 1 0 —x/z
;<y> (9x (g2) 9, (92) 0, (92)) + 9<0 1 —3’/2>
z 00 0



Ox
Right-multiplying this by <5y>, we get

0z
N ox
DP <5y>
0z

xX/z Ox
= (y/z) (0, (92) 0, (92) 0, (92)) (53/)
1 oz

1 0 —x/z\ [/6x
+g9 (0 1 —y/z) <6y>.
0 O 0 YA

The first term can if we prefer be written in terms of the

gradient V(gz) of gz and the dot product, instead of
matrix multiplication.

xX/z dx (92) 0x
(y/z) dy, (92) |- <5y)
1 d, (gz) 6z

The gradient of a function is always perpendicular to the

level sets of the function, so this is going to vanish
o0x _
precisely when | §y | is tangent to the surface S|gz], .
6z

The map P is said to be conformal if the matrix D P is



orthogonal. We can ask whether this ever happens for
any choice of g. Write

Vs dy (92)
Vy = V(gz) = ay 9z) |.
V, d, (92)

=< =

o)
Then <6 )
0z
x/z\ [ Vx 5x 1 0 —x/z\ [/O6x
(WZ) 2 -(5y> +g<0 1 —y/Z> <5y>-
1 v, 6z 0 0 0 6z

o0x
Knowing that <6y> is tangent to S[gz] if and only if

0z
Vx Sx _(bx
Wl (6)/) = 0, weseethatD P (53/) has
v, 6z 6z

o0x
vanishing third component if <5y> is in the tangent

6z
plane of S[gz].

From this it is obvious already that if



We are going to compute this for three choices of the

Ox
vector (53/) , namely

6z
—V, V, 4
| 12 , v,
0 (2 + )/, Vz
We notice that these are pairwise orthogonal. The first
X
two vectors evaluated at the point <y> span the
Z
X
tangent plane of the surface S[gz] at (y> , and the
Z
Vi
last vector | V), | is the normal.
Vz

We compute

Moreover,
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0 0

We want to know the conditions on g which will ensure
that D P maps the first two vectors to orthogonal
vectors. This happens when

A V. 2 2 X
y X Ve + V.
0 0 ‘Yz 0

This boils down to

(W2 + W)
v,

(—xV, + yV.) =0.

In other words, ifV, and at least one of I/, V, arenon-
zero, then xV), =y V. Away from the planes where

X,y vanish, thereisafunction W such that



Ve=zW, V,=yW.
y

Now D P scales the length of( V, ) by |gl. Ifitis

0
to be orthogonal on the tangent plane to the surface
Vx
S[gz], then it must scale the vector W

—(V2+ VAV,
by |g| as well. Thus the two vectors

Vx V, X
2 2
(V2 + VAV, 0 ©N0

Must have the same length. Rewriting these in terms of

W, and writing we see that

X

y W(x? + y?) X
x4y ) <1+ z V, g

Vz

Must have the same length. This gives



(xz + y2)2

2 2
Z

W(x? + y2)\’

= (x*+y?)) |1+ .

(x*+y )( 2V
This immediately simplifies to

(x* +y%) _ <1 | W(x*+ y2)>2.

1+
V7 z V,

Then to

(x*+y?)  2W(x*+y?) N W?2(x? + y?)?
V2 B zV, z2 2
Clearing denominators gives
(x? +y2)z? = 2W(x? + y?)zV, + W?(x? + y?)?
Hence
v o2 W(x?% + y*%)
22w 27

We have found the formulas which make P a conformal

transformation when restricted to each of the surfaces
S (), namely



xW

Vs W
|4 —
Y Z W(x? + y?)
v, Z
2W 27
xW
yWw
V (QZ) = 7 W(x2 4 yZ) (1)
2W 27

Let’s check the case of the stereographic projection

X _x2+yz+z2
gz\Y || = 27 :

VA
We see that
x/z
B y/z
Vigz) = |y (x% +y?)
2 272

Hence we setw = 1/z, and this works perfectly. We
are interested more generally in the choices of W for
which the equation (1) has a solution.

We notice that we can integrate the equation

Vie(92) =x/z



Now
0.(gz) = xW, 0,(gz) = yW.
Hence
(y 0, —x ay)(gz) = 0.
However, changing to cylindrical polars, we have that
x=rcosf, y=rsinb,
d, = cos@ 0, + sinf 0,
dg = —rsinf 0, + r cosf 0,.
Which we can write
(ar) _ ( Cos.H sin 6 ) (ax)
Do —rsin@® rcos6/ \0y
And inversely,

—sin @

0.) cos @ d
Y sin @ - 0




(y 0, —x ay)z — 0g.

We discover that gz is independent of the angle 6.
Thus gz = f[(r,z)], for some function f. Now

(x 0, + ¥ 9,)(gz) = (x2+ yH)W.
Since
X0,y+y 0y = 1 0
We can write the equation as
ro.f= r*w.

So in particular W is also independent of the angle 6.
After this change of variables,

o, f = rWI(r,2)].

We know however, that W must be homogeneous of
degree —1. Itis obtained by dividing components of the
scale invariant function V(gz) by coordinate functions
which are homogeneous of degree 1. Indeed,



W[(tr,tz)] = W[(:’ Z)].

Let’s leave this as an exercise for later, and go the last
mile, and see whether the mapping P is ever conformal
on a region of space. For this we need to compute

Vi
DP VY,
74

Let’s plug in our solutions for V., V), V.



Let’s look at the well known case of the stereographic

projection.
Xt +yt 4z’
gz = 27
0, (92) s
5 (gZ) =
637( Z) 1 xZ +y2
2 2 2272

We compute
sz + VyZ + VZZ
x2+y? 1 x2+y2+ <x2+y2>2

= +
z2 4 272 272

This is just

x? + y? + z° 2
272 '

Putting the terms together yields

X% + 2 + 72 2 (2x/z
( 272 > <2y/z)
1




We really need to stare at this calculation and
understand it better. It is very upsetting that whilst a

single change in sign would lead to this vector being in

0
the direction (O), and the mapping P being conformal

1
on space as well as when restricted to the sphere S(r),

the signs just do not seem to be working out today. It
might be that we need to complexify something or it
might be that we made a mistake or it might just be a
fact of life that this is tantalizingly close but no cigar.



