
The stereographic projection 𝑃  maps the upper half 
space to the upper half space, and more specifically it 
maps the sphere 𝑆(𝑟)  of radius 𝑟 and center (0,0, 𝑟)  
which sits on the origin (0,0,0),    to the plane of points 
whose last coordinate is 𝑟.   In other words, it maps the 
sphere  𝑆(𝑟)   to the horizontal plane through its center. 
The equation of 𝑆(𝑟) is  

𝑥2 + 𝑦2 + 𝑧2

2𝑧
 =   𝑟. 

Exercise.   If we scale the sphere 𝑆(𝑟)   from the origin by 
a scale factor 𝑠 > 0,   then we get 𝑆(𝑠𝑟),    that is  

𝑠𝑆(𝑟)   =   𝑆(𝑠𝑟). 

  If (𝑥,𝑦, 𝑧)  is a point on  𝑆(𝑟),    then 𝑃(𝑥,𝑦, 𝑧)   is 
defined to be the point (𝑋,𝑌, 𝑟)   which is on the straight 
line joining (0,0,0) to (𝑥,𝑦, 𝑧).    From this description we 
find that   

𝑃(𝑥,𝑦, 𝑧) = (𝑋,𝑌,𝑍) =
𝑥2 + 𝑦2 + 𝑧2

2𝑧2
(𝑥,𝑦, 𝑧). 

We also notice that because 𝑃 preserves direction, the 
quantity  



𝑥2 + 𝑦2 + 𝑧2

2𝑧2
 =  

𝑋2 + 𝑌2 + 𝑍2

2𝑍2
  

Is an invariant of 𝑃,   and similarly for the reciprocal, 

2𝑧2

𝑥2 + 𝑦2 + 𝑧2
 =  

2𝑍2

𝑋2 + 𝑌2 + 𝑍2
 . 

Thus the inverse mapping 𝑄 of 𝑃  is given by  

𝑄(𝑋,𝑌,𝑍) =   (𝑥,𝑦, 𝑧)  =   
2𝑍2

𝑋2 + 𝑌2 + 𝑍2
(𝑋,𝑌,𝑍). 

So as to put this in context,   we can consider the 
generalization of this situation,  where we have a 
foliation of some region of space by surfaces  

  
𝑆̃(𝑡)  =   𝑡 𝑆̃(1) 

as the parameter 𝑡 varies over  the positive real 
numbers.  Suppose that  𝑆̃(𝑡)   is given by  

𝑓(𝑥,𝑦, 𝑧)  =   𝑡, 

Where 𝑓 is say a continuously differentiable function.  In 
order for these to not intersect we require that 𝑆̃(1) 
contains precisely one point on each straight line through 
the origin,  and is preferably contained in the upper half 



space and a continuously differentiable graph over the 
plane 𝑧 = 0,  so we don’t need to worry about topology. 

Scaling by 1/𝑡    we get back from 𝑆̃(𝑡) to  𝑆̃(1),   that is 
𝑆̃(1) is the set of those  ( 𝑥/𝑡  , 𝑦/𝑡  , 𝑧/𝑡 )  with  
𝑓(𝑥,𝑦, 𝑧)  =   𝑡,   which is also by renaming dummy 
variables,  the set of those (𝑥,𝑦, 𝑧)   with 

𝑓(𝑡𝑥, 𝑡𝑦 , 𝑡𝑧)  =   𝑡. 

But since 𝑆̃(1)  is also just the set of those (𝑥,𝑦, 𝑧)   with  

𝑓(𝑥,𝑦, 𝑧)  =   1, 

And  the two conditions defining 𝑆̃(1)  must be the same, 
we see that one implies the other and so 

𝑓(𝑡𝑥, 𝑡𝑦 , 𝑡𝑧)  =   𝑡 𝑓(𝑥,𝑦, 𝑧).   

This just says that 𝑓 is homogeneous of degree 1. 

 We want to generalize the stereographic projection to 
this situation.    We define the generalized stereographic 
projection  𝑃 �     which turns the surface 𝑆̃(𝑡)  into the 
plane of points of the form (𝑋,𝑌, 𝑡),   by just specifying 
that (𝑋,𝑌, 𝑡)  is on the straight line through (0,0,0) and 
(𝑥,𝑦, 𝑧).    Explicitly,     



(𝑋,   𝑌, 𝑡     )   =   
𝑡
𝑧

 (𝑥,𝑦, 𝑧)  =   
𝑓(𝑥,𝑦, 𝑧)

𝑧
 (𝑥,𝑦, 𝑧)  . 

Thus it makes sense to set 

𝑔(𝑥,𝑦, 𝑧)   =   
𝑓(𝑥,𝑦, 𝑧)

𝑧
= 𝑓 � 

𝑥
𝑧

,
𝑦
𝑧

 ,   1�.  

So  𝑔 is scale invariant equivalently homogeneous of 
degree 0,   that is 𝑔(𝑠𝑥, 𝑠𝑦, 𝑠𝑧) = 𝑔(𝑥,𝑦, 𝑧) for 𝑠 > 0,   
and   𝑆̃(𝑡)   is given by  𝑧 𝑔(𝑥,𝑦, 𝑧)  =   𝑡,  and  

𝑃 � (𝑥,𝑦, 𝑧) = (𝑋,𝑌,𝑍) =  𝑔(𝑥,𝑦, 𝑧)(𝑥,𝑦, 𝑧). 

There is a curious ambiguity of notation because (𝑥,𝑦, 𝑧)  
is used to denote both the input of the function 𝑔,  and 
the coordinate vector itself.  This is really unfortunate,  
and could be avoided with more refined notation for 
example fancy parentheses to indicate we are evaluating 
the function 𝑔 at that particular input.   As it stands,   just 
writing  𝑔(𝑥,𝑦, 𝑧) could refer to 𝑔 evaluated at (𝑥,𝑦, 𝑧) 
or the function  𝑔 multiplied by the vector (𝑥,𝑦, 𝑧).    We 
dearly want to avoid this kind of ambiguity.   Let’s for 
now be really French-German instead of depending on 
the reader to use their discretion.   Let’s agree to use 
square brackets when we are evaluating a function at an 



input and see how that works out.   Thus our equation 
becomes 

𝑃 � [(𝑥,𝑦, 𝑧)] = (𝑋,𝑌,𝑍) =  𝑔[(𝑥,𝑦, 𝑧)]  (𝑥,𝑦, 𝑧). 

    Notice that the last coordinate is 𝑍 = 𝑔𝑧,  or if we are 
going to labor over details,   𝑍 = 𝑔[(𝑥,𝑦, 𝑧)]𝑧.   Although 
we have been going backwards and forwards on whether 
we want to start with  (𝑥,𝑦, 𝑧) or 𝑍,    we actually started 
off with the demand that  the point (𝑥,𝑦, 𝑧)  is on the 
surface  𝑆̃[𝑍].     Then we wrote 𝑍 in terms of (𝑥,𝑦, 𝑧) to 
now assert    that   (𝑥,𝑦, 𝑧)  is on the surface  𝑆̃[𝑔𝑧] so 
that everything is written nicely in terms of an arbitrary 
point  (𝑥,𝑦, 𝑧).       We really feel like true 
mathematicians when  we can start with a special case,  
then figure out the general case from that one.    We 
probably noticed before,  that instead of starting with 
the surfaces  𝑆̃[𝑡],   we could have started with the single 
surface  𝑆̃[1],  and then defined  𝑆̃[𝑡] = 𝑡 𝑆̃(1).   This 
would lead us to consider what happens if we take weird 
choices of  𝑆̃[1].      However, now we have another 
plausible starting point,  which is to consider any scale 
invariant  function 𝑔[(𝑡𝑥, 𝑡𝑦, 𝑡𝑧)] = 𝑔[(𝑥,𝑦, 𝑧)]   at least 
for all positive values 𝑡.     Then we can look at the  



 

surface   𝑆̃[1]  which is the set of points (𝑥,𝑦, 𝑧) where 
𝑔[(𝑥,𝑦, 𝑧)]𝑧  =1,   and build up a theory from that 
starting point.       However,  we get scale invariant 
functions by knowing where they are equal to 1.    We 
could think instead of starting with a conical surface  
called 𝐶̃[1] consisting of a curve of points and all scaling 
of them so that 𝐶̃[𝑡] =  𝑡𝐶̃[1] for every positive real 
number 𝑡.      This is not enough however to define 𝑔 
everywhere.    Knowing the level sets of 𝑔𝑧  gives much 
more information than just knowing the level set of 𝑔,   
which is necessarily a cone.    In the case of standard 
stereographic projection,  𝐶[1]  is the surface 

𝑥2 + 𝑦2 + 𝑧2

2𝑧2
 =   1, 

Which is just the cone   𝑥2 + 𝑦2 = 𝑧2.      It is perhaps 
interesting to note that 𝐶[𝑡]   is the cone 

 𝑥2 + 𝑦2 =   (2𝑡 − 1)𝑧2. 

It is obtained from 𝐶[1]  by scaling along the 𝑧  direction.  
It is an exercise in analysis to figure out what kind of 
family of symmetries exist or do not exist in general.   For 



now we are just satisfied that a single level surface of 𝑔𝑧  
determines the function 𝑔,  by homogeneity,  and inside 
a  level surface of   𝑔𝑧    are the flat  level curves  of  𝑧 or 
equivalently  level curves of 𝑔.  

 

In any case, for the moment we can leave those as 
homework investigations for pure math REUs.    

 

The inverse  𝑄�   of 𝑃 �  is given by  

 𝑄 �[(𝑋,𝑌,𝑍)] = (𝑥,𝑦, 𝑧) =  
1

𝑔[(𝑥,𝑦, 𝑧)]
(𝑋,𝑌,𝑍)

=
1

𝑔[(𝑋,𝑌,𝑍)]
(𝑋,𝑌,𝑍).  

 

 Our project now is to compute the first derivative of the 
mapping  𝑃� ,  and thus see how  𝑃�  behaves locally since 
the first derivative gives us the linear approximation.   
Let’s then differentiate the equation  

𝑃 [� (𝑥,𝑦, 𝑧)] = (𝑋,𝑌,𝑍) =  𝑔[(𝑥,𝑦, 𝑧)](𝑥,𝑦, 𝑧). 



To get a good look at the derivative,  let’s  write our 

coordinates  �
𝑥
𝑦
𝑧
�  and   �

𝑋
𝑌
𝑍
�   as column vectors   

We have 

�
𝑋
𝑌
𝑍
�   =    𝑔  �

𝑥
𝑦
𝑧
� 

and we can compute the matrix of partial derivatives 

𝐷 𝑃�  =  �
𝜕𝑥 𝑋 𝜕𝑦 𝑋 𝜕𝑧 𝑋
𝜕𝑥 𝑌 𝜕𝑦 𝑌 𝜕𝑧 𝑌
𝜕𝑥 𝑍 𝜕𝑦 𝑍 𝜕𝑧 𝑌

�. 

the linear approximation to 𝑃 �   is  

𝑃 � �
𝑥 + 𝛿𝑥
𝑦 + 𝛿𝑦
𝑧 + 𝛿𝑧

�  ≈    𝑃 � ��
𝑥
𝑦
𝑧
��   +   𝐷 𝑃� ��

𝑥
𝑦
𝑧
��  �

𝛿𝑥
𝛿𝑦
𝛿𝑧
�  

Where the error tends to zero faster than the vector 

�
𝛿𝑥
𝛿𝑦
𝛿𝑧
�.  In other words, its size is  𝑜��𝛿𝑥2  + 𝛿𝑦2 + 𝛿𝑧2�. 

 

 



 

For this purpose,  because we are fundamentally 
interested in the coordinate  𝑍 = 𝑔𝑧,  we start by using 
the decomposition 

�
𝑋
𝑌
𝑍
�   =    𝑔𝑧  �

𝑥/𝑧
𝑦/𝑧

1
� 

Using the product rule,  we obtain the matrix  

𝐷 𝑃� =  �
𝑥/𝑧
𝑦/𝑧

1
��𝜕𝑥 (𝑔𝑧)  𝜕𝑦 (𝑔𝑧)  𝜕𝑧 (𝑔𝑧)�   

+   𝑔𝑧�
1/𝑧 0 −𝑥/𝑧2

0 1/𝑧 −𝑦/𝑧2
0 0 0

� 

  

Where the first term is defined by matrix multiplication.       
Let’s pull out a factors  1/𝑧 again to write this as  

1
𝑧
�
𝑥
𝑦
𝑧
� �𝜕𝑥 (𝑔𝑧)  𝜕𝑦 (𝑔𝑧)  𝜕𝑧 (𝑔𝑧)�   +   𝑔�

1 0 −𝑥/𝑧
0 1 −𝑦/𝑧
0 0 0

� 



Right-multiplying this by  �
𝛿𝑥
𝛿𝑦
𝛿𝑧
�,  we get 

𝐷 𝑃 � �
𝛿𝑥
𝛿𝑦
𝛿𝑧
�

=  �
𝑥/𝑧
𝑦/𝑧

1
� �𝜕𝑥 (𝑔𝑧)  𝜕𝑦 (𝑔𝑧)  𝜕𝑧 (𝑔𝑧)� �

𝛿𝑥
𝛿𝑦
𝛿𝑧
�   

+ 𝑔 �
1 0 −𝑥/𝑧
0 1 −𝑦/𝑧
0 0 0

�  �
𝛿𝑥
𝛿𝑦
𝛿𝑧
�. 

The first term can if we prefer be written in terms of the 
gradient  ∇(𝑔𝑧) of 𝑔𝑧  and the dot product, instead of 
matrix multiplication. 

�
𝑥/𝑧
𝑦/𝑧

1
�       �

𝜕𝑥 (𝑔𝑧)
𝜕𝑦 (𝑔𝑧)
𝜕𝑧 (𝑔𝑧)

� ⋅ �
𝛿𝑥
𝛿𝑦
𝛿𝑧
� 

The gradient of a function is always perpendicular to the 
level sets of the function,  so this is going to vanish 

precisely when �
𝛿𝑥
𝛿𝑦
𝛿𝑧
�  is tangent to the surface 𝑆̃[𝑔𝑧],  .     

The map 𝑃 �  is said to be  conformal  if the matrix 𝐷 𝑃 �  is  



orthogonal.    We can ask whether this ever happens for 
any choice of  𝑔.     Write 

�
𝑉𝑥
𝑉𝑦
𝑉𝑧
�  =   ∇(𝑔𝑧) =  �

𝜕𝑥 (𝑔𝑧)
𝜕𝑦 (𝑔𝑧)
𝜕𝑧 (𝑔𝑧)

�. 

Then     𝐷 𝑃 � �
𝛿𝑥
𝛿𝑦
𝛿𝑧
� 

=  �
𝑥/𝑧
𝑦/𝑧

1
��

𝑉𝑥
𝑉𝑦
𝑉𝑧
� ⋅ �

𝛿𝑥
𝛿𝑦
𝛿𝑧
�   + 𝑔�

1 0 −𝑥/𝑧
0 1 −𝑦/𝑧
0 0 0

�  �
𝛿𝑥
𝛿𝑦
𝛿𝑧
�. 

Knowing that  �
𝛿𝑥
𝛿𝑦
𝛿𝑧
� is tangent to 𝑆̃[𝑔𝑧]  if and only if  

�
𝑉𝑥
𝑉𝑦
𝑉𝑧
� ⋅ �

𝛿𝑥
𝛿𝑦
𝛿𝑧
� =   0,      we see that 𝐷 𝑃 � �

𝛿𝑥
𝛿𝑦
𝛿𝑧
�  has 

vanishing third component if �
𝛿𝑥
𝛿𝑦
𝛿𝑧
�  is in the tangent 

plane of 𝑆̃[𝑔𝑧]. 

From this it is obvious already that if  



 We are going to compute this for three choices of the 

vector  �
𝛿𝑥
𝛿𝑦
𝛿𝑧
� ,  namely  

   �
−𝑉𝑦 
𝑉𝑥 
0
� ,      �

𝑉𝑥
𝑉𝑦

−(𝑉𝑥2 + 𝑉𝑦2)/𝑉𝑧
� , �

𝑉𝑥
𝑉𝑦
𝑉𝑧
� .   

We notice that these are pairwise orthogonal.   The first   

two vectors evaluated at the point �
𝑥
𝑦
𝑧
�   span the 

tangent plane   of the surface 𝑆̃[𝑔𝑧] at �
𝑥
𝑦
𝑧
� ,   and the 

last vector  �
𝑉𝑥
𝑉𝑦
𝑉𝑧
� is the normal.      

We compute  

𝐷 𝑃 � �
−𝑉𝑦 
𝑉𝑥 
0
�  =   𝑔  �

−𝑉𝑦 
𝑉𝑥 
0
� 

Moreover,   



𝐷 𝑃 �

⎝

⎜
⎛

𝑉𝑥
𝑉𝑦

−
𝑉𝑥2 + 𝑉𝑦2

𝑉 𝑧⎠

⎟
⎞

 =   𝑔 

⎝

⎜⎜
⎛
𝑉𝑥 +

𝑥
𝑧

 
�𝑉𝑥2 + 𝑉𝑦2�

𝑉𝑧

𝑉𝑦 +
𝑦
𝑧

 
�𝑉𝑥2 + 𝑉𝑦2�

𝑉𝑧
0 ⎠

⎟⎟
⎞

 

 

=  𝑔 �
𝑉𝑥
𝑉𝑦
0
� + 𝑔

�𝑉𝑥2 + 𝑉𝑦2�
𝑧  𝑉𝑧

 �
𝑥 
𝑦 
0
� . 

We want to know the conditions on 𝑔  which will ensure 
that 𝐷 𝑃 �   maps the first two vectors to orthogonal 
vectors.    This happens when  

�
−𝑉𝑦 
𝑉𝑥 
0
� ⋅   ��

𝑉𝑥
𝑉𝑦
0
� +

�𝑉𝑥2 + 𝑉𝑦2�
𝑧  𝑉𝑧

 �
𝑥 
𝑦 
0
�� = 0, 

This boils down to  

�𝑉𝑥2 + 𝑉𝑦2�
𝑉𝑧

�−𝑥 𝑉𝑦 +  𝑦 𝑉𝑥 �   = 0.  

In other words,   if 𝑉𝑧  and at least one of 𝑉𝑥 ,𝑉𝑦   are non-
zero,   then  𝑥𝑉𝑦 = 𝑦 𝑉𝑥 .    Away from the planes where  
𝑥,𝑦  vanish,    there is a function 𝑊 such that 



𝑉𝑥 = 𝑧 𝑊,     𝑉𝑦 = 𝑦 𝑊. 

Now   𝐷 𝑃 �   scales the length of �
−𝑉𝑦 
𝑉𝑥 
0
�  by |𝑔|.     If it is 

to be orthogonal on the tangent plane to the surface 

𝑆̃[𝑔𝑧],   then it must scale the vector �
𝑉𝑥
𝑉𝑦

−(𝑉𝑥2 + 𝑉𝑦2)/𝑉𝑧
� 

by   |𝑔| as well.   Thus the two vectors  

�
𝑉𝑥
𝑉𝑦

−(𝑉𝑥2 + 𝑉𝑦2)/𝑉𝑧
� ,         �

𝑉𝑥
𝑉𝑦
0
� + �𝑉𝑥2+𝑉𝑦2�

𝑧  𝑉𝑧
 �
𝑥 
𝑦 
0
�       

Must have the same length.   Rewriting these in terms of 
𝑊,  and writing   we see that  

�

𝑥
𝑦

−
(𝑥2 + 𝑦2)

𝑉𝑧

� ,     �1 +
𝑊(𝑥2 + 𝑦2)

𝑧  𝑉𝑧
�  �

𝑥
𝑦
0
�    

Must have the same length.    This gives  



𝑥2 + 𝑦2 +
(𝑥2 + 𝑦2)2

𝑉𝑧2
 

=   (𝑥2 + 𝑦2)�1 +
𝑊(𝑥2 + 𝑦2)

𝑧  𝑉𝑧
�
2

. 

This immediately simplifies to  

1 +
(𝑥2 + 𝑦2)

𝑉𝑧2
 =   �1 +

𝑊(𝑥2 + 𝑦2)
𝑧  𝑉𝑧

�
2

. 

Then to  

(𝑥2 + 𝑦2)
𝑉𝑧2

 =  
2𝑊(𝑥2 + 𝑦2)

𝑧  𝑉𝑧
 +  

𝑊2(𝑥2 + 𝑦2)2

𝑧2  𝑉𝑧2
  . 

Clearing denominators gives 

(𝑥2 + 𝑦2)𝑧2  =   2𝑊(𝑥2 + 𝑦2)𝑧𝑉𝑧  + 𝑊2(𝑥2 + 𝑦2)2   

Hence  

𝑉𝑧   =
𝑧 

2𝑊
−   

 𝑊(𝑥2 + 𝑦2) 
2𝑧

   

We have found the formulas which make 𝑃�  a conformal 
transformation when restricted to each of the surfaces  
𝑆̃ (𝑟),  namely 



�
𝑉𝑥
𝑉𝑦
𝑉𝑧
�  =   �

𝑥𝑊
𝑦𝑊

𝑧 
2𝑊

−   
 𝑊(𝑥2 + 𝑦2) 

2𝑧

�.  

∇ (𝑔𝑧)  =     �

𝑥𝑊
𝑦𝑊

𝑧 
2𝑊

−   
 𝑊(𝑥2 + 𝑦2) 

2𝑧

� .     (1) 

   Let’s check the case of the stereographic projection 

 𝑔𝑧 ��
𝑥
𝑦
𝑧
�� =

𝑥2 + 𝑦2 + 𝑧2

2𝑧
. 

We see that  

∇ (𝑔𝑧)  =     �

𝑥/𝑧
𝑦/𝑧

1 
2
−   

 (𝑥2 + 𝑦2) 
2𝑧2

�. 

Hence we set 𝑤 = 1/𝑧,     and this works perfectly.    We 
are interested more generally in the choices of 𝑊  for 
which the equation (1) has a solution. 

We notice that we can integrate the equation  

∇𝑥(𝑔𝑧)  = 𝑥/𝑧 



Now 

∂𝑥(𝑔𝑧) = 𝑥𝑊,        ∂𝑦(𝑔𝑧) = 𝑦𝑊. 

Hence  

�y ∂𝑥  − 𝑥   ∂𝑦�(𝑔𝑧) =   0. 

However,  changing to cylindrical polars,  we have that 

𝑥 = 𝑟 cos𝜃 ,      𝑦 = 𝑟 sin𝜃, 

𝜕𝑟  =  cos𝜃   𝜕𝑥  +    sin𝜃   𝜕𝑦 

𝜕𝜃  =  −r sin𝜃   𝜕𝑥  +    𝑟 cos𝜃   𝜕𝑦. 

Which we can write  

�𝜕𝑟𝜕𝜃
�  =   � cos𝜃 sin𝜃

−𝑟 sin𝜃 𝑟 cos𝜃�  �
𝜕𝑥
𝜕𝑦
�   

And inversely, 

�
𝜕𝑥
𝜕𝑦
�  =   �

 cos𝜃
−sin𝜃
𝑟

sin𝜃  
cos𝜃
𝑟

�  �𝜕𝑟𝜕𝜃
�   

 

 



�y ∂𝑥  − 𝑥   ∂𝑦� =  − 𝜕𝜃 . 

We discover that 𝑔𝑧   is independent of the angle 𝜃.    
Thus  𝑔𝑧 = 𝑓[(𝑟, 𝑧)],  for some function 𝑓.    Now 

�x ∂𝑥 +  𝑦   ∂𝑦�(𝑔𝑧)  = (𝑥2 + 𝑦2)𝑊. 

Since  

x ∂𝑥 +  𝑦   ∂𝑦  =   𝑟  𝜕𝑟   

We can write the equation as   

𝑟  𝜕𝑟 𝑓 =    𝑟2 𝑊. 

So in particular 𝑊  is also independent of the angle 𝜃.   
After this change of variables, 

𝜕𝑟 𝑓 =   𝑟 𝑊[(𝑟, 𝑧)]. 

We know however,  that 𝑊  must be homogeneous of 
degree −1.    It is obtained by dividing components of the 
scale invariant function ∇(𝑔𝑧)  by coordinate functions 
which are homogeneous of degree 1.    Indeed, 

 

 



𝑊[(𝑡𝑟, 𝑡𝑧) ]   =   
𝑊[(𝑟, 𝑧)]

𝑡
. 

 

Let’s leave this as an exercise for later,  and  go the last 
mile, and see whether the mapping  𝑃�  is ever conformal 
on a region of space.     For this we need to compute     

𝐷 𝑃 � �
𝑉𝑥
𝑉𝑦
𝑉𝑧
�

= �𝑉𝑥2 + 𝑉𝑦2 + 𝑉𝑧2� �
𝑥/𝑧
𝑦/𝑧

1
�   

+ 𝑔 

⎝

⎜
⎛
𝑉𝑥 − �

𝑥
𝑧
�𝑉𝑧

𝑉𝑦 −  �
𝑦
𝑧
�𝑉𝑧

0 ⎠

⎟
⎞

. 

 

 

 

Let’s plug in our solutions for 𝑉𝑥 , 𝑉𝑦 , 𝑉𝑧. 



Let’s look at the well known case of the stereographic 
projection. 

𝑔𝑧   =   
𝑥2 + 𝑦2 + 𝑧2

2𝑧
 

�
𝜕𝑥 (𝑔𝑧)
𝜕𝑦 (𝑔𝑧)
𝜕𝑧 (𝑔𝑧)

�    =  �

𝑥/𝑧
𝑦/𝑧

1
2
−
𝑥2 + 𝑦2

2𝑧2

�.          

We compute  

𝑉𝑥2 + 𝑉𝑦2 + 𝑉𝑧2  

=   
𝑥2 + 𝑦2

𝑧2
+

1
4
−
𝑥2 + 𝑦2

2𝑧2
+  �

𝑥2 + 𝑦2

2𝑧2
�
2

.  

This is just  

�
𝑥2 + 𝑦2 + 𝑧2

2𝑧2
�
2

. 

Putting the terms together yields  

�
𝑥2 + 𝑦2 + 𝑧2

2𝑧2
�
2

�
2𝑥/𝑧
2𝑦/𝑧

1
�  



We really need to stare at this calculation and 
understand it better.    It is very upsetting that whilst a 
single change in sign  would lead to this vector being in 

the direction �
0
0
1
�,  and the mapping  𝑃�   being conformal 

on space as well as when restricted to the sphere 𝑆(𝑟),   
the signs just do not seem to be working out today.    It 
might be that we need to complexify something or it 
might be that we made a mistake or it might just be a 
fact of life that this is tantalizingly close but no cigar.    


