The upper half space RZ,, is the set of points
(a,b,c) € R3 with ¢ > 0. We write (x,y,z) for the
standard coordinate functions on the upper half space,

( x[(a,b,0)] , yl(a,b,c)] , zl(a,b,c)]) = (a,b,c).

This can also be written in the form (x,y,z) = I, where |
is the identity function on the upper half space.

The stereographic projection P maps the upper half
space to itself. We will give its simple definition.

When Z is a positive real number, we use the notation
S[Z] for the sphere in the upper half space which sits on
the origin (0,0,0) and has radius Z. Its center is at the
point (0,0,Z). The only point of S[Z] which is not in
the upper half space is (0,0,0).

The formula of S[Z] isx* + y% + (z — Z)* = Z?. This
can be simplified to
x? +y?% + z2
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The left side is well defined on the upper half space. To

= Z.

make certain to have the right geometric picture, we



emphasize that the center and equator of the sphere
S[Z] are on the plane z = Z.

It makes sense to define r to be the length of (x,y, z)

givenby r = x2+y2+22 sor?= x?+y?+2z°.
Then the formula of S[Z] becomes

r2

Z =
Exercise. Show that sS[Z] = S[sZ]. Inother words,
S[Z] scaled by the factor s > 0, equals S[sZ].

Z.

It is clear that each point in the upper half space is on
the sphere S[Z] for precisely one value of the radius
Z >0, because Z is uniguely determined by the
coordinates (x,y, z).

Indeed, the point (a, b, ¢) in the upper half space is on
the sphere S[Z] with

a’ + b? + c?
/ = :
2¢C
The stereographic projection P takes (a, b, c) to the

point of intersection of the straight ray from (0,0,0) to
(a,b,c), with theplanez = Z.



Lets compute the coordinates of the stereographic
projection of (a, b, ¢). Since the ray can be
parameterized as (ta, tb, tc) with t > 0, we obtain the
intersection with the plane z = Z by plugging in

tc = z = Z, yielding the intersection point

a’ + b? + c?
2c?

In particular P[(a, b, c)] exists in the upper half space.

Pl(a,b,c)] = %(a, b,c) = (a,b,c). (1)

P[(a, b, c)] is a positive scalar multiple of (a, b, c).

Define the componentsof P by (X,Y,Z) = P. We can
evaluate these component functions by expanding (1):

Pl(a,b,c)] = (X[(a,b,c)],Y [(a,b,c)], Z[(a, b, c)]) =

(a® + b? + c?a (a®+ b? +c?)b (a?+ b?* + c?)c
2c2 ’ 2c2 ’ 2c2 '
Alternatively, we can rewrite (1) by defining

a’ + b? + c?
2c2 ’

gl(a,b,c)] =



So that P[(a,b,c)] = gl(a,b,c)] (a,b,c).

Let’s summarize our formulas for P by writing them in
terms of the coordinate functions.

The stereographic projection on the upper half space is
2 2 2
xX° + + z
P = 4
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r’x r’y r?z
2z2%2 " 222 2z2

(x,y, 2).

P=(XY2Z) = <
P = g (X,y,Z)

P= g-1

Where r? = x° + y% + z? and we define

_x2+yz+z2 r?2

g 222 - 2z2°

We included the dot in the expression P = g - (x,y,2)
to emphasize multiplication. When we evaluate P at

(a, b, ¢), the function g produces the real number

gl (a, b, c)] and the standard coordinates (x, y, z) are the
identity and just produce the point (a, b, ¢) itself.



The output of the function P = (X,V,Z) at any point

(a, b, ¢) in the upper half space, is a set of three new
coordinates. It is however a question whether (X,Y, Z)
does indeed provide a system of curvilinear coordinates
on the upper half space. To answer this question we will
need to check that P is one-to-one and onto, so it has
an inverse. Moreover, in order to use these coordinates
for differential calculations, we will need to check that P
and its inverse are smooth, which just means that the
components have partial derivatives of all orders.

Exercise. Show that P is smooth by showing that the

components

x? + y? + z2
272 ’

have partial derivatives of all orders with respect to the

X,Y,Z)= (gx, gy, 9z), g=

coordinate functions (x, y, z), on the upper half space.

Exercise. Notice that the formula for g does not extend
continuously to the plane z = 0. The mapping P does
not extend continuously either. Explain geometrically
what stereographic projection does to planes z = ¢, as

& = 0. This exercise will be easier later on.



Now that we have the formulas for P, it is a question
whether we want to think of the output P[(a, b,c)] as
being in the same space as the point (a, b,c). There is
another way of thinking often called the dual
interpretation, which is that the function (X,Y,Z) takes
coordinates from the upper half space to coordinates in a
separate new copy of the upper half space. Thinking of
(a,b,c) and P[(a,b,c)] as being in separate copies of
the upper half space is just a picture and does not show
up in our mathematical formulas. Although we could
label the outputs with a tag to say which function they
came from, we do not bother to do this. We can
imagine (a,b,c) and P[(a, b, c)] to be in separate
copies of the upper half space and join them by an
arrow, in order to more easily visualize

(X,Y,Z)|(a, b, c)] as giving us new coordinates for
(a,b,c), without becoming confused by the fact that we
are assigning two different sets of coordinates to each
point.

The picture of having different ranges for different
coordinate functions is common in the theory of
manifolds. On a manifold there is an ambient geometry.



It can be described in different coordinates and is given
by different formulas in the different coordinates. For
example, for a curved surface in space we can picture
the coordinates either as a grid of curves on the surface,
or as the standard Euclidean coordinates on the plane
with the geometry invisible and encoded in formulas.
One case where this becomes trivial is when we are
considering the standard coordinates on Euclidean space.
It is not necessary for us to visualize (x,y,z) as mapping
the upper half space to a separate copy of the upper half
space, since the map is just the identity map and does
not create an ambiguity in the names of the points.

Let’s check whether P = (X,Y,Z) given by

_x2+yz+z2 r2

P=g-(x,y,z), g = 272 — ﬁ

is indeed a curvilinear coordinate system. We still need

to check that P is one-to-one and onto and that the
inverse is smooth. For a point (a,b,c) inthe upper
half space, set

(A,B,C) = P[(a,b,c)] =gl(a,b,c)] (a,b,c).



The function g is non-vanishing. Hence the inverse
should just be obtained just by dividing by g[(a, b, ¢)].

(a,b,c) =

Jl@b,o] ABO-

However, it looks as though we need to know (a, b, ¢)
to compute the scale factor 1/g[(a, b, ¢)], whereas the
inverse is supposed to compute (a, b,c) from
(4,B,C). This problem is easily remedied because

g is scale invariant meaning that for every t > 0 and
point (a, b, c) inthe upper half plane,

gl(ta,tb,tc)] = gl(a,b,c)].
Equivalently,

(ta)? + (tb)* + (tc)*  a® +b* +c?
2(tc)? B 2c2 '

Now we note that, (4, B, C) is a scalar multiple of
(a,b,c). The scale factor happens to be g[(a, b, c)]. By
the scale invariance, g has the same value at (a, b, ¢)
and (4,B, (), and so g|[(a,b,c)] = gl(4,B,C)]. Thus



(a,b,c) =

9l4,B, 0] WE O

In summary, we used

a2+b2+cz_A2+Bz+Cz

g[(a) b; C)] — 2C2 - ZCZ
= gl(4,B,0)],
To obtain
(0,b,¢) =———— (A4,B,C)
a,n,Cc) = D,
gl(a, b,c)]
= 2c? (4,B,C)
AP+ BZ+CE T

However, this uniquely recovers the point (a, b, c) from
the value (4, B,C) of P and so P is one-to=one.

Now conversely, for any choice of (4, B, C) in the upper
half space, set

2

(a)blc) =A2 _I_Bz +C2 (A)B;C)
A% +B* +C?
Then (4,B,C) = i (a,b,c),
a + b% + ¢?

53 (a,b,c) = P[(a,b,c)].



Where again, we used the scale invariance of g. We
have found a point (a, b, ¢) in the upper half space, with
(A,B,C) = P[(a,b,c)], andso P is onto.

This completes the proof that P one-to-one, and onto,
and is thus invertible.

Geometrically, the fact that g is scale invariant means
that it is constant on rays through the origin. From this
we see that the map P is acting just by multiplying the
points of each ray by a uniform positive scale factor.
Such a scaling is one-to-one and onto for each individual
ray. Thus P it is one-to-one and onto on the whole
upper half space because the upper half space is the
disjoint union of the rays.

We have exhibited the inverse formula

2
A%+ B% + (C?
Denoting the inverse of P by Q, for (4, B, C) in the
upper half space,

(a,b,c) =

(4,B, ).

2

A%+ B% + C?

0[(4,B,0)] = (4, B, C).



This is the point where we come to an unpleasant
realization, which is that in order to write Q in terms of
coordinate functions we need to plug the point (4, B, )
which was an output of P, into the function Q. We can
write Q in terms of the coordinate functions.

227y =t oy
Ty X,Y,Z =3 X,Y,Z).

Q =
Indeed, we can check that this formula works for
(4,B,0C).

Exercise. Show that the components of Q have partial
derivatives of all orders, so Q is smooth. This completes
the proof that P is a smooth coordinate map from the
upper half space to the upper half space

Exercise. Define a function f on the slab {(a, b, c) :
1<c<?2}, by flla,bc)]= (3—c) (a,b,c).

Dividing both sides of this equation by (3 — ¢), gives

(a,b,c) =

1
(3 . C) ) f[(ar b, C)]

Does this prove the map f is invertible and produce an
inverse?



As a subtle point for the enthusiast, suppose we had
been given the formula
2 2 2
xX“ + + z
P = 4
272

And been told that whilst (x,y,z) are coordinate

(x,y,2)

functions, they might be curvilinear, whereas the
standard coordinate functions are actually (u, v,w). We
would have gone through all our arguments using the
coordinates (x, y, z), and our conclusion would still be
that

272

x? + y? + z?

Q= (x,y,2)

Gets us back from the output of P to the (x,y, z)
coordinates of a point. It does not however get us to the
standard coordinates, which would necessitate us
composing with the inverse of the coordinate map

(x,y,2).
We perhaps need more warnings against this kind of

ambiguity. For example, now we have the curvilinear
coordinates P , we always need to keep track of whether



we are working with the standard coordinates or the
coordinates P. For example, the sphere S[Z] with the
origin (0,0,0) deleted, which is defined for each fixed
positive value of Z, has the formular?/2z = Z. This
formula can be expressed in terms of the new coordinate
functions (X,Y,Z) asZ = Z. We need to agree that
this is not a plane, but a sphere with a point deleted.

The problem occurs when we try to describe a surface
without being clear whether we are talking about the
surface itself or the representation of the surface in non-
standard coordinates. As we just noted,

{(ab,c):Z[(a,b, )] =27},
Is a sphere in the upper half space, whereas
{X,Y,2)[(a,b,c)] : Z[(a,b,c)] = Z }

is its image P[S[Z]], which is a horizontal plane in the
upper half space. Thus we referto P[S[Z]] asthe
(X,Y,Z) coordinates of the surface Z = Z. We refer to

{(a,b,c):Z[(a,b,c)] =7}
as just the surface Z = Z, or if we want to emphasize
the names of the coordinates it is the (x,y, z)
coordinates of the surface Z = Z. Both the plane



P[S[Z]] and the sphere S[Z] minus the origin, are
surfaces in the upper half space. We cannot differentiate
between them by them existing in different spaces,
because they exist in the same space.

In summary, if we have a subset of space we can try to
describe it in terms of specific coordinates, and it makes
sense to clearly identify any functions we use.

For example, we already mentioned at least twice that
the sphere S[Z] isthe (x,y,z) coordinates of gz =
Z, where g = (x* + y* + z%)/(2z%).

For any real number t > 0, define C[t] to be the
(x,y,z) coordinates of the levelsetg =t. C[t] is
the cone

x? +y%= (2t —1)z=.

In particular, C[1] is the cone x2 + y? = z2. The
reason we get a cone is because g is scale invariant as
we proved earlier.

gl(sa,sb,sc)] = g|(a, b, c)].

However, the (X,Y,Z) coordinates of the the level set
g = tisthe image under the map (X,Y,Z) of the



points (x,y,z), the cone C[t]. The scale invariance of g
implies that a point is on C[t] if and only if

g[(X: Y,Z)(Cl, b, C)] — g[(ar b, C)] — g[(a' b, C)] = t.

Thus C[t] is also the a level set of g o P where there
small circle denotes composition of operators, and is
given by

X2 +Vv%2= (2t—-1Z%

This is one occasion where we cannot become confused.



