
The upper half space  ℝ∗∗+
3    is  the set of points 

(𝑎, 𝑏, 𝑐) ∈ ℝ3  with   𝑐 > 0.     We write (𝑥,𝑦, 𝑧) for the 
standard coordinate functions on the upper half space,    

(  𝑥[(𝑎, 𝑏, 𝑐)]   ,   𝑦[(𝑎, 𝑏, 𝑐)]   ,   𝑧[(𝑎,𝑏, 𝑐)] ) = (𝑎,𝑏, 𝑐). 

This can also be written in the form (𝑥,𝑦, 𝑧) = 𝐼, where 𝐼 
is the identity function on the upper half space. 

 

The  stereographic projection 𝑷  maps the upper half 
space to itself.   We will give its simple definition. 

When 𝑍 is a positive real number, we  use the notation 
𝑆[𝑍]  for the sphere in the upper half space which sits on 
the origin (0,0,0) and has radius 𝑍.     Its center  is  at the 
point (0,0,𝑍).    The only point of 𝑆[𝑍]  which is not in 
the upper half space is (0,0,0). 

    The formula of 𝑆[𝑍]  is 𝑥2 + 𝑦2 + (𝑧 − 𝑍)2 =  𝑍2.  This 
can be simplified to  

𝑥2 + 𝑦2 + 𝑧2

2𝑧
 =  𝑍 . 

The left side is well defined on the upper half space.   To 
make certain to have the right geometric picture, we 



emphasize that the center and  equator of the sphere 
𝑆[𝑍] are on the plane 𝑧 = 𝑍. 

It makes sense to define 𝑟  to be the length of (𝑥,𝑦, 𝑧) 

given by  𝑟 = �𝑥2 + 𝑦2 + 𝑧2     so  𝑟2 =  𝑥2 + 𝑦2 + 𝑧2 . 
Then the formula of 𝑆[𝑍]  becomes 

𝑟2

2𝑧
 =  𝑍 . 

Exercise.   Show that  𝑠𝑆[𝑍]   =   𝑆[𝑠𝑍].   In other words,    
𝑆[𝑍] scaled by the factor 𝑠 > 0,  equals  𝑆[𝑠𝑍]. 

It is clear that each point in the upper half space is on  
the sphere 𝑆[𝑍]  for precisely one value of the radius 
𝑍 > 0,  because 𝑍 is uniquely determined by the 
coordinates (𝑥,𝑦, 𝑧).   

Indeed, the point (𝑎, 𝑏, 𝑐) in the upper half space is on 
the sphere  𝑆[𝑍]  with  

𝑍 =
𝑎2 + 𝑏2 + 𝑐2

2𝑐
 . 

The stereographic projection 𝑷  takes   (𝑎, 𝑏, 𝑐) to the 
point of intersection of the straight ray from (0,0,0) to 
(𝑎, 𝑏, 𝑐),  with the plane 𝑧 = 𝑍.    



Lets compute the coordinates of the stereographic 
projection of (𝑎, 𝑏, 𝑐).   Since the ray can be 
parameterized as (𝑡𝑎, 𝑡𝑏, 𝑡𝑐) with 𝑡 > 0,  we obtain the 
intersection with the plane 𝑧 = 𝑍  by plugging in  
𝑡𝑐 = 𝑧 = 𝑍,  yielding the intersection point 

𝑷[(𝑎, 𝑏, 𝑐)] =
𝑍
𝑐

(𝑎, 𝑏, 𝑐) =
𝑎2 + 𝑏2 + 𝑐2

2𝑐2
(𝑎, 𝑏, 𝑐) .  (1) 

In particular 𝑷[(𝑎, 𝑏, 𝑐)]  exists in the upper half space.  

 

 

Define the components of  𝑷   by  (𝑿,𝒀,𝒁) = 𝑷.  We can 
evaluate these component functions by expanding (1): 

𝑷[(𝑎, 𝑏, 𝑐)] = (𝑿[(𝑎, 𝑏, 𝑐)] ,𝒀 [(𝑎, 𝑏, 𝑐)],𝒁[(𝑎, 𝑏, 𝑐)]) = 

 

�
(𝑎2 + 𝑏2 + 𝑐2)𝑎

2𝑐2
,
(𝑎2 + 𝑏2 + 𝑐2)𝑏

2𝑐2
,
(𝑎2 + 𝑏2 + 𝑐2)𝑐

2𝑐2
�. 

Alternatively,  we can rewrite (1) by defining   

𝑔[(𝑎, 𝑏, 𝑐)] =
𝑎2 + 𝑏2 + 𝑐2

2𝑐2
, 

𝑷[(𝑎, 𝑏, 𝑐)] is a positive scalar multiple of  (𝑎, 𝑏, 𝑐). 



So that         𝑷[(𝑎, 𝑏, 𝑐)] =  𝑔[(𝑎, 𝑏, 𝑐)]  (𝑎, 𝑏, 𝑐). 

Let’s summarize our formulas for 𝑷  by writing them in 
terms of the coordinate functions. 

 

 

 

 

 

 

 

 

 

 

We included the dot in the expression  𝑷 =   𝑔 ⋅  (𝑥,𝑦, 𝑧) 
to emphasize multiplication.   When we evaluate 𝑷 at  
(𝑎, 𝑏, 𝑐), the function 𝑔 produces the real number  
𝑔[(𝑎, 𝑏, 𝑐)] and the standard coordinates (𝑥,𝑦, 𝑧) are the 
identity and just produce the point (𝑎, 𝑏, 𝑐) itself.   

𝑷 =
𝑥2 + 𝑦2 + 𝑧2

2𝑧2
(𝑥,𝑦, 𝑧). 

𝑷 = (𝑿,𝒀,𝒁) =  �
𝑟2𝑥
2𝑧2

  ,   
𝑟2𝑦
2𝑧2

  ,   
𝑟2𝑧
2𝑧2

�  

𝑷 =   𝑔 ⋅  (𝑥,𝑦, 𝑧) 

𝑷 =   𝑔 ⋅  𝐼 

𝑔 =
𝑥2 + 𝑦2 + 𝑧2

2𝑧2
 =  

𝑟2

2𝑧2
 . 

The stereographic projection on the upper half space is 

Where 𝑟2 =  𝑥2 + 𝑦2 + 𝑧2  and we define 

 



The output of the function 𝑷 = (𝑿,𝒀,𝒁)  at any point 
(𝑎, 𝑏, 𝑐) in the upper half space,  is a set of three new  
coordinates.  It is however a question whether (𝑿,𝒀,𝒁)  
does indeed provide a system of curvilinear coordinates 
on the upper half space.   To answer this question we will 
need to check that   𝑷 is one-to-one and onto, so it has 
an inverse.   Moreover,  in order to use these coordinates 
for differential calculations,  we will need to check that 𝑷  
and its inverse are smooth,  which just means that the 
components have partial derivatives of all orders. 

Exercise.  Show that 𝑷  is smooth by showing that the 
components 

(𝑿,𝒀,𝒁) =  (𝑔𝑥  ,   𝑔𝑦  ,   𝑔𝑧),      𝑔 =
𝑥2 + 𝑦2 + 𝑧2

2𝑧2
 ,  

have partial derivatives of all orders with respect to the 
coordinate functions (𝑥,𝑦, 𝑧), on the upper half space.  

Exercise.  Notice that the formula for   𝑔  does not extend 
continuously to the plane 𝑧 = 0.   The mapping 𝑷 does 
not extend continuously either.   Explain geometrically 
what stereographic projection does to planes 𝑧 = 𝜀, as 
𝜀 → 0.  This exercise will be easier later on. 



Now that we have the formulas for 𝑷 , it is a question 
whether we want to think of the output   𝑷[(𝑎, 𝑏, 𝑐)]   as 
being in the same space as the point (𝑎, 𝑏, 𝑐).   There is 
another way of thinking often called the dual 
interpretation,  which is that the function (𝑿,𝒀,𝒁)  takes 
coordinates from the upper half space to coordinates in a 
separate new copy of the upper half space.    Thinking of  
(𝑎, 𝑏, 𝑐) and  𝑷[(𝑎, 𝑏, 𝑐)] as being in separate copies of 
the  upper half space is just a picture and does not show 
up in our mathematical formulas.  Although we could 
label the outputs with a tag to say which function they 
came from, we do not bother to do this.   We can 
imagine  (𝑎, 𝑏, 𝑐) and  𝑷[(𝑎, 𝑏, 𝑐)]  to be in separate 
copies of the  upper half space and join them by an 
arrow,  in order to more easily visualize 
(𝑿,𝒀,𝒁)[(𝑎, 𝑏, 𝑐)]  as giving us new coordinates for   
(𝑎, 𝑏, 𝑐),   without becoming confused by the fact that we 
are assigning two different sets of coordinates to each 
point.  

 The picture of having different ranges for different 
coordinate functions is common  in the theory of 
manifolds.   On a manifold there is an ambient geometry.  



It can be described in different coordinates and is given 
by different formulas in the different coordinates.  For 
example,  for a curved surface in space we can picture 
the  coordinates either as a grid of curves on the surface,  
or as the  standard Euclidean coordinates on the plane 
with the geometry invisible and  encoded in formulas.  
One case where this becomes trivial is when we are 
considering the standard coordinates on Euclidean space.   
It is not necessary for us to visualize  (𝑥,𝑦, 𝑧) as mapping 
the upper half space to a separate copy of the upper half 
space,  since the map is just the identity map and does 
not create an ambiguity in the names of the points.   

  Let’s check whether 𝑷 = (𝑿,𝒀,𝒁)  given by  

𝑷 = 𝑔 ⋅ (𝑥,𝑦, 𝑧),       𝑔 =
𝑥2 + 𝑦2 + 𝑧2

2𝑧2
 =  

𝑟2

2𝑧2
 

is indeed a curvilinear coordinate system.   We still need 
to check that 𝑷 is one-to-one and onto and that the 
inverse is smooth.   For a point    (𝑎, 𝑏, 𝑐) in the upper 
half space,   set  

(𝐴,𝐵,𝐶) = 𝑷[(𝑎, 𝑏, 𝑐)]  = 𝑔[(𝑎, 𝑏, 𝑐)]   (𝑎, 𝑏, 𝑐). 



The function 𝑔 is non-vanishing.   Hence the inverse 
should just be obtained just by dividing  by 𝑔[(𝑎, 𝑏, 𝑐)]. 

(𝑎, 𝑏, 𝑐) =
1

𝑔[(𝑎, 𝑏, 𝑐)] (𝐴,𝐵,𝐶) . 

However,   it looks as though we need to know (𝑎, 𝑏, 𝑐) 
to compute the scale factor 1 𝑔[(𝑎, 𝑏, 𝑐)]⁄ ,  whereas the 
inverse is supposed to compute  (𝑎, 𝑏, 𝑐)  from   
(𝐴,𝐵,𝐶).   This problem is easily remedied because  

 

 

 

 

 

 

Now we note that, (𝐴,𝐵,𝐶)   is a scalar multiple of  
(𝑎, 𝑏, 𝑐).   The scale factor happens to be 𝑔[(𝑎, 𝑏, 𝑐)].  By 
the scale invariance, 𝑔 has the same value at  (𝑎, 𝑏, 𝑐)  
and (𝐴,𝐵,𝐶),  and  so  𝑔[(𝑎, 𝑏, 𝑐)] = 𝑔[(𝐴,𝐵,𝐶)].  Thus 

𝑔[(𝑡𝑎, 𝑡𝑏, 𝑡𝑐)]  = 𝑔[(𝑎, 𝑏, 𝑐)]. 

(𝑡𝑎)2 + (𝑡𝑏)2 + (𝑡𝑐)2

2(𝑡𝑐)2
 =   

𝑎2 + 𝑏2 + 𝑐2

2𝑐2
.  

 𝑔  is scale invariant meaning that for every 𝑡 > 0 and 
point  (𝑎, 𝑏, 𝑐)  in the upper half plane,   

Equivalently, 

 



(𝑎, 𝑏, 𝑐) =
1

𝑔[(𝐴,𝐵,𝐶)] (𝐴,𝐵,𝐶) . 

In summary,  we used  

𝑔[(𝑎, 𝑏, 𝑐)] =
𝑎2 + 𝑏2 + 𝑐2

2𝑐2
=
𝐴2 + 𝐵2 + 𝐶2

2𝐶2
=  𝑔[(𝐴,𝐵,𝐶)], 

To obtain 

(𝑎, 𝑏, 𝑐) =
1

𝑔[(𝑎, 𝑏, 𝑐)] (𝐴,𝐵,𝐶)  

=   
2𝐶2

𝐴2 + 𝐵2 + 𝐶2
 (𝐴,𝐵,𝐶). 

 However, this uniquely recovers the point  (𝑎, 𝑏, 𝑐)  from 
the value (𝐴,𝐵,𝐶)  of 𝑷  and  so  𝑷 is one-to=one.  

Now conversely,  for any choice of (𝐴,𝐵,𝐶)  in the upper 
half space,  set  

(𝑎, 𝑏, 𝑐) =
2𝐶2

𝐴2 + 𝐵2 + 𝐶2
 (𝐴,𝐵,𝐶). 

Then       (𝐴,𝐵,𝐶) =  
𝐴2 + 𝐵2 + 𝐶2

2𝐶2
(𝑎,𝑏, 𝑐),                       

=
𝑎2 + 𝑏2 + 𝑐2

2𝑐2
(𝑎, 𝑏, 𝑐) = 𝑷[(𝑎, 𝑏, 𝑐)]. 



Where again, we used the scale invariance of 𝑔.    We 
have found a point (𝑎, 𝑏, 𝑐) in the upper half space,  with 
(𝐴,𝐵,𝐶) = 𝑷[(𝑎, 𝑏, 𝑐)],   and so 𝑷 is onto.   

This completes the proof that  𝑷 one-to-one,  and onto, 
and is thus invertible.   

Geometrically,  the fact that 𝑔  is scale invariant  means 
that it is constant on rays through the origin.   From this 
we see that the map 𝑷  is acting just by multiplying the 
points of each ray by a uniform positive scale factor.   
Such a scaling is one-to-one and onto for each individual 
ray.   Thus 𝑷 it is one-to-one and onto on the whole 
upper half space because the upper half space is the 
disjoint union of the  rays.      

  We have exhibited the  inverse formula 

(𝑎, 𝑏, 𝑐) =
2𝐶2

𝐴2 + 𝐵2 + 𝐶2
 (𝐴,𝐵,𝐶). 

Denoting the inverse of  𝑷  by 𝑄, for (𝐴,𝐵,𝐶) in the 
upper half space, 

𝑄[(𝐴,𝐵,𝐶)] =  
2𝐶2

𝐴2 + 𝐵2 + 𝐶2
 (𝐴,𝐵,𝐶). 



This is the point where we come to an unpleasant 
realization,  which is that in order to write 𝑄 in terms of 
coordinate functions we need to plug the point (𝐴,𝐵,𝐶)  
which was an output of 𝑷,  into the function  𝑄.   We can 
write  𝑄  in terms of the coordinate functions.   

𝑄 =  
2𝑧2

𝑥2 + 𝑦2 + 𝑧2
 (𝑥,𝑦, 𝑧) =

1
𝑔
⋅ (𝑥,𝑦, 𝑧). 

Indeed, we can check that this formula works for 
(𝐴,𝐵,𝐶).    

Exercise.  Show  that the components of 𝑄 have partial 
derivatives of all orders,  so  𝑄 is smooth.  This completes 
the proof that 𝑷  is a smooth coordinate map from the 
upper half space to the upper half space 

Exercise.  Define a function 𝑓  on the slab {(𝑎, 𝑏, 𝑐) ∶
  1 ≤ 𝑐 ≤ 2},       by  𝑓[(𝑎, 𝑏, 𝑐)] =   (3 − c) ⋅ (𝑎, 𝑏, 𝑐).  

Dividing both sides of this equation by (3 − 𝑐), gives  

(𝑎, 𝑏, 𝑐) =    
1

(3 − c) ⋅ 𝑓
[(𝑎, 𝑏, 𝑐)]. 

Does this prove the map 𝑓  is invertible and produce an 
inverse? 



 

As  a subtle point for the enthusiast,  suppose we had 
been given the formula   

𝑷 =
𝑥2 + 𝑦2 + 𝑧2

2𝑧2
(𝑥,𝑦, 𝑧) 

And been told that whilst (𝑥,𝑦, 𝑧)  are coordinate 
functions,  they might be curvilinear, whereas the 
standard coordinate functions are actually (𝑢, 𝑣,𝑤).  We 
would have gone through all our arguments using the 
coordinates (𝑥,𝑦, 𝑧), and  our conclusion would still be 
that 

𝑄 =  
2𝑧2

𝑥2 + 𝑦2 + 𝑧2
 (𝑥,𝑦, 𝑧) 

Gets us back from  the output of 𝑷  to the (𝑥,𝑦, 𝑧)  
coordinates of a point.   It does not however get us to the  
standard coordinates,  which would necessitate us 
composing with the inverse of the coordinate map 
(𝑥,𝑦, 𝑧). 

   We perhaps need  more warnings against this kind of 
ambiguity.  For example,  now we have the curvilinear 
coordinates 𝑷  , we always need to keep track of whether 



we are working with the standard coordinates or the 
coordinates  𝑷.    For example,   the sphere 𝑆[𝑍]  with the 
origin  (0,0,0) deleted, which is defined for each fixed 
positive value of 𝑍,  has the formula 𝑟2/2𝑧 = 𝑍.   This 
formula can be expressed in terms of the new coordinate 
functions (𝑿,𝒀,𝒁) as 𝒁 = 𝑍.    We need to agree that 
this is not a plane, but a sphere with a point deleted.    
The problem occurs when we try to describe  a surface  
without being clear whether we are talking about the 
surface itself or the representation of the surface in  non-
standard  coordinates.     As we just noted,   

{ (𝑎, 𝑏, 𝑐) ∶ 𝒁[(𝑎, 𝑏, 𝑐)] = 𝑍 },   

Is a sphere in the upper half space,  whereas 

 { (𝑿,𝒀,𝒁)[(𝑎, 𝑏, 𝑐)] ∶ 𝒁[(𝑎, 𝑏, 𝑐)] = 𝑍 } 

 is its image 𝑷[𝑆[𝑍]],  which is a horizontal plane in the 
upper half space.     Thus we refer to   𝑷[𝑆[𝑍]]  as the 
(𝑿,𝒀,𝒁) coordinates of the surface  𝒁 = 𝑍.   We refer to   

{ (𝑎, 𝑏, 𝑐) ∶ 𝒁[(𝑎,𝑏, 𝑐)] = 𝑍 } 
 as just the surface  𝒁 = 𝑍,  or if we want to emphasize 
the names of the coordinates it is the (𝑥,𝑦, 𝑧)  
coordinates of the surface 𝒁 = 𝑍.    Both the plane  



𝑷[𝑆[𝑍]] and the sphere  𝑆[𝑍]  minus the origin,  are 
surfaces in the upper half space.  We cannot differentiate 
between them by them existing in different spaces, 
because they exist in the same space.     

In summary,  if we  have a subset of  space  we can try to  
describe it in terms of specific coordinates,  and it makes 
sense to clearly identify any functions we use.    

 For example,  we already mentioned at least twice that 
the sphere    𝑆[𝑍]  is the   (𝑥,𝑦, 𝑧) coordinates of 𝑔𝑧 =
 𝑍,  where  𝑔 = (𝑥2 + 𝑦2 + 𝑧2)/(2𝑧2).    

For any real number  𝑡 > 0,  define   𝐶[𝑡]  to be the  
(𝑥,𝑦, 𝑧) coordinates of the  level set 𝑔 = 𝑡.      𝐶[𝑡]   is 
the cone 

𝑥2 + 𝑦2 =   (2𝑡 − 1)𝑧2. 

In particular,  𝐶[1]  is the cone  𝑥2 + 𝑦2 =   𝑧2.   The 
reason we get a cone is because  𝑔 is scale invariant as 
we proved earlier.    

  𝑔[(𝑠𝑎, 𝑠𝑏, 𝑠𝑐)] = 𝑔[(𝑎, 𝑏, 𝑐)].     

However,   the (𝑿,𝒀,𝒁) coordinates of the the  level set 
𝑔 = 𝑡 is the image under  the map (𝑿,𝒀,𝒁)   of the 



points  (𝑥,𝑦, 𝑧),  the cone 𝐶[𝑡].  The scale invariance of 𝑔 
implies that a point is on 𝐶[𝑡] if and only if  

𝑔[(𝑿,𝒀,𝒁)(𝑎, 𝑏, 𝑐)] = 𝑔[(𝑎, 𝑏, 𝑐)] = 𝑔[(𝑎, 𝑏, 𝑐) ] = 𝑡. 

Thus 𝐶[𝑡]   is also the a level set of 𝑔 ∘  𝑷   where there 
small circle denotes composition of operators, and is 
given by  

𝑿2 + 𝒀2 =   (2𝑡 − 1)𝒁2. 

This is one occasion where we cannot become confused.   

 

 

 

 

 


