
Kate Okikiolu’s Lecuture Notes Assignment,  1/25/2026:   

Write more words on the Three Lines Lemma from Terry 

Tao’s lecture notes.    The lemma itself has been taught 

for generations and appears in Terry’s notes. 

Lemma 5.10  (Three Lines Lemma.)   Let    be a complex-

analytic function on the strip                 which is 

of at most double-exponential growth,  or more precisely  

                                         

  for some        Suppose that we have the bounds 

          when        and           when    

Then we have  

                        

Discussion.    Before discussing this result,  let’s pose a 

homework question to think about during our discussion. 

The strip  has two ends.   What can we say if    just 

satisfies the conditions of the theorem on one end? 

 

 

 

 



 The first thing to note about the lemma is that the 

domain of the analytic function is an unbounded strip in 

the complex plane.     Thus the famous maximum 

modulus principle for complex analytic functions does 

not apply.   That result tells us that if a complex function 

is defined on a bounded open set in the complex plane 

and if the function is complex-analytic,  and moreover   

extends continuously  to the boundary of the set,  then 

the function attains its maximum modulus on the 

boundary.   We would like to apply that theorem here.   

However there are two problems and the first one is 

obviously that the region in question is not bounded.   

 If    is an unbounded open set in the complex plane, 

and if    is a complex-analytic function on    which 

extends continuously to the boundary,  we say that   is 

unbounded but anchored,  which we abbreviate to UBA,  

if    is uniformly bounded on the boundary of  ,   but 

unbounded on  .    The Lemma is telling us that UBA 

functions on the strip of width   in the complex plane 

have to grow faster than                   . 

 



The Lemma is not just a trivial application of the 

maximum modulus principle.   We need to work on the 

function  .    If we just try to apply the maximum 

modulus principle to    on the rectangles   

                                      

 where   is large we get nothing.  The  bounds we 

assume for the modulus          on the lines          

     increase to infinity as    increases, with  a horrible 

double exponential asymptotic.   Secondly we want a 

nice delicate refined bound on      within the strip  that 

is better than just taking the maximum of    and  .  

 

The proof of the result splits into two cases,   most 

importantly,  the case  when          and more 

easily  the problem of getting to the general case from 

that case.      These two cases both have guiding example 

functions.    We cannot hope to understand the lemma 

without understanding these examples.   The easier part 

of the result is reducing the general case to the case 

         Let’s assume that      are two positive 

numbers.  (The reader can deal with the case when one 



of them vanishes at the end.)     The guiding example is 

the function 

          

Here,     is some real valued constant which is not zero.   

Writing         with     being its real and imaginary 

parts,  we have  

                                            

Of course the last factor is just a complex number of 

modulus  . 

                                    

The modulus of            is precisely              It is 

constant on each line       of the strip with    fixed.    

Of course           is not constant on this line because 

it winds around and around on the complex circle of 

numbers with modulus              The lemma is 

however a result  about the modulus of analytic 

functions on the strip, and so this is irrelevant.    In this 

guiding example, the argument of the function changes 

but its modulus is bounded on the whole strip.     What is 

now important for us  is that  whatever positive value   



we are given, we can select    so that               

Indeed,  just take           .     We then notice that  

                                   
 

 
 
 

          

This is the beautiful precise bound in the lemma.  Our 

guiding example is equal to         . 

If we start with a general function   satisfying the 

hypotheses of the lemma with general positive constants 

      then  the reader can check that the new function 

    

        
   

    

       
 

Will satisfy the conditions of the lemma with the 

constants     replaced by  .     All we need to do is thus 

bound this new function by    ,   to get the precise bound 

on   given in the Lemma.    Hence we can now specialize 

to trying to prove the lemma when      .  

 

When         the  main important guiding  

counterexample  to maximum modulus,  is the UBA 

function  



                              

The amazing feature of our guiding counterexample  

                              

Is the way that it anchors on the boundary lines 

                   It is uniformly bounded on those 

lines,  but it is unbounded on the strip,  making it by 

definition an UBA function.      Let’s check this because it 

is the crucial point of the discussion.   We are playing 

with the exponential like we did before except that then 

we were looking at          when   was real, whereas 

now we are looking at the specific imaginary  value 

       , and after understanding this function,  we are 

going to need to take an additional exponential  to 

achieve our goals of producing a counterexample.    

                                           

This expands as                                  

The reason that we chose the value    is that the 

imaginary part         vanishes on the boundary lines 

where           It is strictly positive in the strip.    

The modulus of the function 



                                      

 is                                 .      At points in the strip  

with             we see that          is positive,  and 

so           has exponential growth to infinity as 

   ,   and exponential decrease to zero as     .     

Most importantly however,  when       ,   the 

modulus of    is just  .    We see how    amazingly 

anchors the boundary lines.      We also see that if we 

were to replace    in the definition of    by a slightly 

smaller constant,    ,  for a positive    ,  this would 

fail.    In that case,  the function    would be exponentially 

increasing on the boundary lines as well.  It would not be 

UBA.     This illustrates the presence of the positive 

constant    in the lemma.     The function with the 

coefficient       does satisfy the growth condition in 

the lemma,  but yet it fails to be bounded on the strip.      

It does not contradict the Lemma,  because   it fails to be 

bounded on the  boundary lines.     The Lemma is telling 

us that   if    is UBA  then it must  be growing  fast along  

the strip.   If     is complex-analytic but slow growing 

along the strip, the rate                 with      ,  it 

must be unbounded on at least one of  the boundary 



lines.     Its  modulus cannot tend to infinity  at a weak 

rate along the middle of the strip while staying  uniformly 

bounded on the boundary lines.    That is the case which 

is not allowed.  It is impossible.    Surely we should be 

able to understand this on an intuitive level.    Assume 

that a complex-analytic function is tending to infinity 

along a sequence of  points with  -values           in 

the strip whilst being uniformly bounded on the 

boundary lines,        .   The    partial   -derivative of 

the function must also be big at some points  in the strip 

with   -values          ,    because the function  has to 

get back down at the boundary as    varies in the interval 

from   to  .  However, the partial  -derivative has the 

same modulus as the partial  -derivative from the 

Cauchy Riemann equations for complex-analytic 

functions.    This forces the derivative of the function to 

be big in the  -direction as well,  which could be driving 

it to become even larger.     However,   this real dotty 

reasoning only seems to hint that exponential increase of 

the function might be expected.  Complex analyticity is a 

very strong condition.   We need a more delicate 

harmonic analysis to prove the double exponential 

increase claimed in the lemma. 



We remark that there is some argument  that instead of 

proving the Lemma on the complex strip  

             ,   one should work  on the complex 

strip                  .   This is purely because in 

that case the guiding counterexample is   

                              

The only advantage is having one fewer negative sign and 

appearance of   and so there is slightly less risk of 

computational dyslexia.  The modulus of       is just 

                             ,   which equals      on the 

boundary           where the cosine factor vanishes.    

At points in the strip where        ,    we see that 

         is positive,  and so    has exponential decay as 

   ,   and exponential increase as     .   We 

obtain    from      just by rotating and translating the 

complex variable     ,  namely                   

Indeed,  

                                           

                

  Using the symmetric strip                     is 

appealing but of course many would claim it is the same 



exact problem.   However, we can continue our 

discussion there for now. 

Of course there are many other UBA  functions on the 

strip in addition to    .   For example,  we could replace    

in the definition of    by any odd multiple of     with   

an odd integer,   and that would also give a function 

which has modulus   on the lines with       .    In 

particular,  when we choose –  ,   we just get the 

function       ,  the composition of   with a half turn 

of   around the origin, which then has  exponential 

growth as     ,  and exponential decrease to zero as   

       and otherwise has the same properties as   in 

terms of the upper bounds on the growth of        as a 

function of    .     The other choices where we replace    

in the definition of     with an odd multiple     with 

     , have larger growth.      In fact, we can get UBA 

functions which have arbitrarily large growth on the 

interior of the strip    as    ,   just by composing    

with  entire functions such as polynomial functions or 

exponentials.   For example,  

                                 



The fact that     is bounded on the lines         

means that any entire function of    will also be.   

However,  whilst we can get functions of enormous 

growth by composing the function      with more and 

more exponentials,  we cannot in general go the other 

way and take  an  UBA function and expect to get 

another one by taking a logarithm.   This is because the 

logarithm of a function which is bounded on the 

boundary lines may fail to be bounded on the boundary 

lines.   For example,   

                                                  

Whilst this has zero real part on the lines       ,   its 

imaginary part oscillates unboundedly as       along 

the boundary lines, albeit  remaining pure imaginary.  

That extra exponentiation is what took this function and 

produced one which is  uniformly bounded on the 

boundary lines   because the  exponentiation sends the 

entire imaginary line to the unit  circle which is bounded.   

Exponentiation takes any vertical straight  line and sends 

it to a bounded circle.  There are other functions with 

lower growth which do this,  for example  the function 

         ,  but such functions are bounded on the 



whole strip.    Although taking the logarithm of an UBA 

function on the strip,  does not necessarily lead to 

another UBA function on the strip,  we can certainly get 

an UBA function which grows more slowly than any  one 

we care to choose,  just by multiplying it  by a rational 

function like         ,   or various decaying 

exponentials.   There is no UBA function of minimal 

growth is what we strongly suspect from this.      We also 

see other UBA   functions growing substantially slower 

than      for example consider 

                          

It is still equal to   on the boundary lines but yet it 

modulus tends to    along other lines strip as     tends 

down the strip in the negative  -direction.   

The  barrier function proof of the three line’s lemma 

involves finding a clever one parameter family of 

functions       on the strip,  which tends to    pointwise 

as      ,   but which can be multiplied by the function 

    to damp it down at infinity enabling the use of the 

maximum modulus principle on rectangles.  

  


