Kate Okikiolu’s Lecuture Notes Assignment, 1/25/2026:
Write more words on the Three Lines Lemma from Terry
Tao’s lecture notes. The lemma itself has been taught
for generations and appears in Terry’s notes.

Lemma 5.10 (Three Lines Lemma.) Let f be a complex-
analytic function on the strip {0 < Re(z) < 1}, whichis
of at most double-exponential growth, or more precisely

f(@)| < Cexp( Cy exp((m—8)|z]) )
forsome 6 > 0. Suppose that we have the bounds

|f(z)] <A whenRez =0 and |f(z)| < B when 1.

Then we have
|f(Z)| < Al—Re(z) BRe(z)

Discussion. Before discussing this result, let’s pose a
homework question to think about during our discussion.
The strip has two ends. What can we say if g just
satisfies the conditions of the theorem on one end?



The first thing to note about the lemma is that the
domain of the analytic function is an unbounded strip in
the complex plane. Thus the famous maximum
modulus principle for complex analytic functions does
not apply. That result tells us that if a complex function
is defined on a bounded open set in the complex plane
and if the function is complex-analytic, and moreover
extends continuously to the boundary of the set, then
the function attains its maximum modulus on the
boundary. We would like to apply that theorem here.
However there are two problems and the first one is
obviously that the region in question is not bounded.

If U is an unbounded open set in the complex plane,
and if g is a complex-analytic function on U which
extends continuously to the boundary, we say that g is
unbounded but anchored, which we abbreviate to UBA,
if g is uniformly bounded on the boundary of U, but
unbounded on U. The Lemma is telling us that UBA
functions on the strip of width 1 in the complex plane

have to grow faster than exp(exp((n — 5)|Z|)).



The Lemma is not just a trivial application of the
maximum modulus principle. We need to work on the
function f. If we just try to apply the maximum
modulus principle to f on the rectangles

{0 <Re(2) < 1}, {—N <Im(z) < N},
where N is large we get nothing. The bounds we

assume for the modulus |f(z)| on the lines | Im(z)]
N increase to infinity as N increases, with a horrible
double exponential asymptotic. Secondly we want a
nice delicate refined bound on |f| within the strip that
is better than just taking the maximum of A and B.

The proof of the result splits into two cases, most
importantly, the case when A = B =1, and more
easily the problem of getting to the general case from
that case. These two cases both have guiding example
functions. We cannot hope to understand the lemma
without understanding these examples. The easier part
of the result is reducing the general case to the case

A =B =1. Let'sassume that A, B are two positive
numbers. (The reader can deal with the case when one



of them vanishes at the end.) The guiding example is
the function

Aexp(cz).

Here, ¢ is some real valued constant which is not zero.
Writing z = x + iy with x,y being its real and imaginary
parts, we have

Aexp(cz) = Aexp(cx +icy) = Aexp(cx) exp(icy).

Of course the last factor is just a complex number of
modulus 1.

exp(icy) = cos(cy) + i sin(cy).
The modulus of A exp(cz) is precisely A exp(cx). Itis
constant on each line x + iy of the strip with x fixed.
Of course A exp(cz) is not constant on this line because
it winds around and around on the complex circle of
numbers with modulus A exp(cx). The lemmais
however a result about the modulus of analytic
functions on the strip, and so this is irrelevant. In this
guiding example, the argument of the function changes
but its modulus is bounded on the whole strip. What is
now important for us is that whatever positive value B



we are given, we can select ¢ so that Aexpc = B.
Indeed, just take c = log(B/A). We then notice that

B X
Aexp(cx) = Aexp(xlog(B/A)) = A (Z)
= A% B*,

This is the beautiful precise bound in the lemma. Our
guiding example is equal to A% BZ.

If we start with a general function f satisfying the
hypotheses of the lemma with general positive constants
A, B, then the reader can check that the new function

f(2) f(2)

Aexp(cz) Al-ZBz

Will satisfy the conditions of the lemma with the
constants A, B replaced by 1. All we need to do is thus
bound this new function by 1, to get the precise bound
on f given in the Lemma. Hence we can now specialize
to trying to prove the lemmawhen A = B = 1.

When A = B = 1, the main important guiding
counterexample to maximum modulus, is the UBA
function



F(z) = exp(i exp(—miz) ).

The amazing feature of our guiding counterexample

F(z) = exp(i exp(—miz) )

Is the way that it anchors on the boundary lines

{x +iy:x =0 or1}. Itisuniformly bounded on those
lines, butitis unbounded on the strip, making it by
definition an UBA function.  Let’s check this because it
is the crucial point of the discussion. We are playing
with the exponential like we did before except that then
we were looking at exp(cx) when ¢ was real, whereas
now we are looking at the specific imaginary value

¢ = —m i, and after understanding this function, we are
going to need to take an additional exponential to
achieve our goals of producing a counterexample.

i exp(—ni (x + iy)) =iexp(—mix) exp(my).
This expands as exp(mry)( sin(mx) + icos(mx) )

The reason that we chose the value i is that the
imaginary part sin(mrx) vanishes on the boundary lines
where x = 0or 1. Itis strictly positive in the strip.

The modulus of the function



F(x+iy) = exp(i exp(—mi(x+1iy)) )

is exp ( sin(mx) exp(my) ). Atpointsin the strip
with 0 < x <1, we see thatsin(mwx) is positive, and
so F(x + iy) has exponential growth to infinity as

y — 00, and exponential decrease to zero as y - —oo.
Most importantly however, whenx = 0or1, the
modulus of F isjust 1. We see how F amazingly
anchors the boundary lines.  We also see that if we
were to replace m in the definition of I by a slightly
smaller constant, m — 6, for a positive 6 < m, this would
fail. Inthat case, the function would be exponentially
increasing on the boundary lines as well. It would not be
UBA. This illustrates the presence of the positive
constant § inthelemma. The function with the
coefficient m — & does satisfy the growth condition in
the lemma, but yet it fails to be bounded on the strip.

It does not contradict the Lemma, because it fails to be
bounded on the boundary lines. The Lemma is telling
us that if f is UBA then it must be growing fast along
the strip. If f is complex-analytic but slow growing
along the strip, the rate exp(exp |cz|) with |c| < m, it
must be unbounded on at least one of the boundary



lines. Its modulus cannot tend to infinity at a weak
rate along the middle of the strip while staying uniformly
bounded on the boundary lines. That is the case which
is not allowed. Itisimpossible. Surely we should be
able to understand this on an intuitive level. Assume
that a complex-analytic function is tending to infinity
along a sequence of points with y-values y;,y,, ... in
the strip whilst being uniformly bounded on the
boundary lines, x = 0or1. The partial x-derivative of
the function must also be big at some points in the strip
with y-values y4,Vv,,..., because the function has to
get back down at the boundary as x varies in the interval
from 0 to 1. However, the partial x-derivative has the
same modulus as the partial y-derivative from the
Cauchy Riemann equations for complex-analytic
functions. This forces the derivative of the function to
be big in the y-direction as well, which could be driving
it to become even larger. However, this real dotty
reasoning only seems to hint that exponential increase of
the function might be expected. Complex analyticity is a
very strong condition. We need a more delicate
harmonic analysis to prove the double exponential
increase claimed in the lemma.



We remark that there is some argument that instead of
proving the Lemma on the complex strip

{0 < Re(z) < 1}, one should work on the complex
strip {—1/2 < Re(z) < 1/2}. Thisis purely because in
that case the guiding counterexample is

Fy(z) = exp( exp(miz) ).

The only advantage is having one fewer negative sign and
appearance of i and so there is slightly less risk of
computational dyslexia. The modulus of Fy(z) is just
exp ( cos(mx) exp(—my) ), whichequals 1 onthe
boundary x = +1/2 where the cosine factor vanishes.
At points in the strip where [x] < 1/2, we see that
cos(mx) is positive, and so F has exponential decay as
y — 00, and exponential increaseasy —» —oo. We
obtain F from F, just by rotating and translating the
complex variable 2z, namely F(z) = F,(1/2 — z).
Indeed,

exp (ni(l/Z — z)) = exp(mi/2) exp(—mi z)
= i exp(—mi z).

Using the symmetric strip {—1/2 < Re(z) < 1/2} is
appealing but of course many would claim it is the same



exact problem. However, we can continue our
discussion there for now.

Of course there are many other UBA functions on the
strip in addition to F,. For example, we could replace i
in the definition of Fy by any odd multiple of kmr with k
an odd integer, and that would also give a function
which has modulus 1 on the lines withx = +1/2. In

particular, when we choose —-m, we just get the
function Fy(—2z), the composition of F with a half turn
of z around the origin, which then has exponential
growth as y — 400, and exponential decrease to zero as
y — —oo, and otherwise has the same properties as F in
terms of the upper bounds on the growth of |F(z)| as a
function of |z|. The other choices where we replace @
in the definition of F, with an odd multiple km with

|k| > 1, have larger growth. In fact, we can get UBA
functions which have arbitrarily large growth on the
interior of the strip asy — oo, just by composing f
with entire functions such as polynomial functions or
exponentials. For example,

exp( exp ( exp(miz) ) ).



The fact that F; is bounded on the linesx = +1/2
means that any entire function of F, will also be.
However, whilst we can get functions of enormous
growth by composing the function F, with more and
more exponentials, we cannot in general go the other
way and take an UBA function and expect to get
another one by taking a logarithm. This is because the
logarithm of a function which is bounded on the
boundary lines may fail to be bounded on the boundary
lines. For example,

log Fy(x +iy) = exp(—my)( cos(m x) + isin(mx)).

Whilst this has zero real part on the lines x = +1/2, its
imaginary part oscillates unboundedly as y — —oo along
the boundary lines, albeit remaining pure imaginary.
That extra exponentiation is what took this function and
produced one which is uniformly bounded on the
boundary lines because the exponentiation sends the
entire imaginary line to the unit circle which is bounded.
Exponentiation takes any vertical straight line and sends
it to a bounded circle. There are other functions with
lower growth which do this, for example the function

z — 1/(z + 1), but such functions are bounded on the



whole strip. Although taking the logarithm of an UBA
function on the strip, does not necessarily lead to
another UBA function on the strip, we can certainly get
an UBA function which grows more slowly than any one
we care to choose, just by multiplying it by a rational
function like 1/(z + 1), or various decaying
exponentials. There is no UBA function of minimal
growth is what we strongly suspect from this. We also
see other UBA functions growing substantially slower
than F, for example consider

e exp(e exp(miz) ).

It is still equal to 1 on the boundary lines but yet it
modulus tends to co along other lines strip as z tends
down the strip in the negative y-direction.

The barrier function proof of the three line’s lemma
involves finding a clever one parameter family of
functions g.(z) on the strip, which tends to 1 pointwise
as & — 0, but which can be multiplied by the function
f todamp it down at infinity enabling the use of the
maximum modulus principle on rectangles.



