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The celebrated Contraction Mapping Theorem is useful in
analysis and topology and we are going to apply it to obtain
uniqueness and regularity results for the resolvent.

Contraction Mapping. If (Y, d) is a metric space, then T
is called a contraction of Y if T is a mapping from Y to Y ,
and there exists a constant C with 0 < C < 1, such that
whenever y, z ∈ Y , then

d(Ty, Tz) ≤ C d(y, z).

The constant C is called a contraction constant for T . (C is
only called a contraction constant if C is less than 1.) The
minimum of these constants is called the best contraction
constant for T .

A fixed point of T is a point y ∈ Y with Ty = y.

Contraction Mapping Theorem. If Y is a non-empty com-
plete metric space and T is a contraction of Y , then
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(a) There exists a unique fixed point of the mapping T .

(b) For every y0 in Y , the unique fixed point of T can be
obtained as a limit

lim
j→∞

T jy0.

In particular the limit always exists.

(c) For every y0 in Y , the distance from y0 to the fixed point
yf of T satisfies

d(y0, yf) ≤ 1

1− C
d(y0, T y0),

where C is any contraction constant for T .

Proof. First we note that if a fixed point y exists then it is
unique. Indeed, if Ty = y and Tz = z then

d(y, z) = d(Ty, Tz) ≤ C d(y, z).

Thus (1 − C)d(y, z) ≤ 0, and because a metric is always
non-negative, this implies d(y, z) = 0.

To see that a fixed point exists, since Y is non-empty we
can select a point y0 in Y .

Define a sequence of points in Y recursively by yj+1 = Tyj.
Then for j ≥ 1,

d(yj, yj+1) = d(Tyj−1, T yj) ≤ Cd(yj−1, yj),

and so by induction, d(yj, yj+1) ≤ Cjd(y0, T y0).

If j < k, then applying the triangle inequality for the metric
we get

d(yj, yk) ≤ d(yj, yj+1) + d(yj+1, yj+2) + . . . + d(yk−1, yk).
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This is bounded by (Cj+Cj+1+· · ·+Ck−1)d(y0, T y0) which
by summing the geometric series is bounded by a multiple
of Cj, explicitly

d(yj, yk) ≤
Cj

1− C
d(y0, T y0). (1)

Hence the sequence yj is Cauchy in Y and since Y is complete
yj converges to some limit y ∈ Y .

To show y is a fixed point of T , it is easy to see that a
contraction is continuous and so yj+1 = Tyj → Ty as j →
∞. By the uniqueness of limits, Ty = y. To see this directly,

d(yj+1, T y) = d(Tyj, T y) ≤ Cd(yj, y)→ 0.

To summarize, we started with a completely arbitrary point
y0 in Y , and we showed that the limit in (b) exists and is a
fixed point of T . Having showed already that a fixed point
is unique, we conclude (a) and (b). To show (c), consider (1)
with j = 0, and let k →∞.

Let’s introduce the differential equation we hope to solve.
If p is a continuous function on the real line and z is a com-
plex number, our goal is to find all the solutions f to the
equation (

−D2 + p − z
)
f = 0. (2)

By superficially comparing this to the equation D2f = 0,
which is solved by repeated integration, we might hope that
the solution to (2) is unique if we fix a real number t0, com-
plex numbers a and b, and an “initial” condition

f (t0) = a, f ′(t0) = b. (3)
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The terminology “initial condition” comes from physical prob-
lems where f (t) is a function of time.

The problem with the differentiation operator is that it un-
stable. If we begin with a twice differentiable function and
differentiate it twice, we just get a continuous function and
cannot necessarily twice differentiate again. Differentiation
of functions can lead to very large functions even if we start
with functions which are bounded and continuous. In partic-
ular tiny oscillations can become big when we differentiate.
Surely if we want to analyze differentiation it would seem
easier to work with the opposite of differentiation? Integra-
tion is the opposite of differentiation and tends to smooth
functions out and it certainly takes continuous functions to
continuous functions. That is why our first effort will be
to change the differential equation (2)-(3) into an integral
equation. Heuristically, we write (2) in the form

D2 f = (p − z)f,

and use the fundamental theorem of calculus to rewrite it as

f =

∫ ∫
(p− z)f.

Then we will define an operator

Tf =

∫ ∫
(p− z)f,

which we will find is a contraction if we restrict the function
f (t) to a small interval (t0 − ε, t0 + ε). From this we get a
solution using the Contraction Mapping Theorem.

We need to be careful about defining the limits of integra-
tion in the integrals to make them definite. This will lead
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us to magically incorporate the initial conditions and the
differential equation into the single formula

f (t) = a + b(t− t0) +

∫ t

t0

(t− s) (p(s)− z) f (s) ds. (4)

Proposition 1. (Changing a second order linear differential
equation with initial conditions into an integral equation.)
Suppose p is a continuous function on R, and z is a complex
number.
(a) If f is twice continuously differentiable complex function
on R which satisfies (2) and (3), then f satisfies (4).
(b) Conversely, if a continuous function f satisfies (4) then
in fact f is twice continuously differentiable and satisfies (2)
and (3).

(c) The first derivative of a function f which satisfies (4) or
equivalently (2)-(3) is given by

f ′(t) = b +

∫ t

t0

(p(s)− z) f (s) ds.

(d) If p is k-times continuously differentiable, and if f satis-
fies (4) or equivalently (2)-(3), then writing (2) as

f ′′(t) = (p− z)f (t).

we immediately see that f is k+ 2-times continuously differ-
entiable.

The proof of Proposition 1 is left as an exercise which can
be solved with a real analysis course that covers the Funda-
mental Theorem of Calculus.

We are going to show that we can solve this equation (2)-
(3) or equivalently (4) uniquely on the real line for every
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choice of real t0 and complex z, a, b. Before carrying out this
application of the Contraction Mapping Theorem, let’s make
some more basic observations about the solutions assuming
that they do indeed exist and are indeed unique as we will
go on to show.

We notice that the equation (2) is a linear equation. In
particular if f and g are solutions then so are f + g and cf
where c is any complex number. Let’s denote the solution
to (2)-(3) or equivalently (4), by f (z, a, b, t0, t). When the
initial time t0 is fixed, let’s distinguish two solutions with
the initial data f (t0) = 1, f ′(t0) = 0, and the initial data
f (t0) = 0, f ′(t0) = 1, often called Dirichlet and Neumann
boundary conditions respectively.

f0(z, t0 , t) = f (z, 1, 0, t0, t),

f1(z, t0 , t) = f (z, 0, 1, t0, t).

Then the uniqueness of the solution proves that

f (z, a, b, t0, t) = a f0(z, t0, t) + b f1(z, t0, t).

because by plugging the right hand side into (2) and evaluat-
ing at t = t0, we find that it satisfies (2)-(3) or equivalently
(4). Hence the behavior of the solution in terms of a and b
is very simple. It is not an aspect of the problem we need
to analyze analytically. However, studying the dynamics of
the solution data (f (t), f ′(t)) as t varies is an interesting dy-
namical system in the phase space R3, which places a copy
of R2 at each point t of the real line. The second order dif-
ferential equation (2) is a first order differential equation in
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phase space of the form

Dt

(
f (t)
f ′(t)

)
=

(
0 1

p(t)− z 0

)(
f (t)
f ′(t)

)
.

It is common in the study of ordinary differential equations
to work with such first order systems and transform them
to integral systems. However, we will instead work with the
scalar integral equation (4). We already remarked that(

f (z, a, b, t0, t)
f ′(z, a, b, t0, t)

)
=

(
f0(z, t0, t) f1(z, t0, t)
f ′0(z, t0, t) f

′
1(z, t0, t)

)(
a
b

)
.

A fundamental object of study is thus the evolution of the
matrix on the right hand side, which obviously satisfies the
equation.

Dt

(
f0 f1

f ′0 f ′1

)
=

(
0 1

p(t)− z 0

)(
f0 f1

f ′0 f ′1

)
,

with initial condition(
f0(z, t0, t0) f1(z, t0, t0)
f ′0(z, t0, t0) f ′1(z, t0, t0)

)
=

(
1 0
0 1

)
.

The determinant of such a matrix associated to two functions
f0 and f1 is often known as the Wronskian Determinant.
When those functions are solutions to a linear differential
equation like (2), their Wronskian miraculously turns out to
satisfy a simpler differential equation. In this case it turns
out to be constant.

W =

∣∣∣∣f0 f1

f ′0 f ′1

∣∣∣∣ .
Then

W = f0f
′
1 − f ′0 f1,
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and

DtW = f ′0 f
′
1 + f0 f

′′
1 − f ′′0 f1 − f ′0 f

′
1,

The first and last terms cancel and we can use the equation
to write the middle two terms as

f0 (p− z) f1 − (p− z) f0f1 = 0.

Hence the Wronskian determinant is constant. So far what
we have done works for any two solutions f0 and f1. We have
shown in particular that if they provide a basis for the initial
conditions of a solution at any point then they continue to
do so. The Wronskian can be evaluated by plugging in t = t0
to get in this case,

W =

∣∣∣∣f0(z, t0, t0) f1(z, t0, t0)
f ′0(z, t0, t0) f ′1(z, t0, t0)

∣∣∣∣ =

∣∣∣∣1 0
0 1

∣∣∣∣ = 1.

The mapping (
f (t0)
f ′(t0)

)
→
(
f (t)
f ′(t)

)
which takes initial data at t0, constructs a solution with that
data, and then reads off the data at t, is a linear isomor-
phism of R2 which preserves area. This can be stated in
general terms by saying that the flow of the ordinary dif-
ferential equation (2) preserves the area form on the phase
space. Even more fanciful, is to say that the flow of the
ordinary differential equation preserves the symplectic form
dt ∧ dτ on phase space, or dx ∧ dξ if we have a differen-
tial equation in a space variable x. This property continues
to hold for the geodesic flow on a Riemannian manifold in
higher dimensions, and for other flows associated to many
linear ordinary differential equations in higher dimensions.
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It is time to show how to apply the beautiful and simple
Contraction Mapping Theorem to prove the short time exis-
tence of solutions to the homogeneous resolvent equation (4)
where z, a, and b are fixed. We will later extend this to long
time existence, and investigate the behavior of the solutions
as functions of z as well.

Theorem 1. Suppose that p is a continuous function on R.
Suppose z, a and b are complex numbers, t0 is a real number,
and ε is a real number such that

sup{ |p(t)| : |t− t0| < ε} + |z| < 2

ε2
.

This is achievable by the continuity of p at t0.

Set Ω = (t0− ε , t0 + ε), and let Y be the space of bounded
continuous functions on Ω with norm

‖f‖ = ‖f‖Ω = sup
Ω
|f |.

Then there is a unique solution f to the equation (4) on the
interval Ω. In fact, the operator

Tf (t) =

a + b(t− t0) +

∫ t

t0

(t− s) (p(s)− z) f (s) ds (5)

is a contraction on Y with contraction constant
ε2

2
(‖p‖Ω + |z|) .

Proof of Theorem 1. First note that Y is a normed vector
space and hence a metric space. Moreover, Y is complete be-
cause if fj is a Cauchy sequence then it is pointwise Cauchy,
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and hence converges pointwise to a function. However, the
fact that the sequence was uniformly Cauchy easily implies
that the convergence is uniform. The limit is thus bounded
and continuous being a uniform limit of bounded continu-
ous functions. We leave the real-analysis-1 details for the
student.

We need to check that T maps Y to Y . First note that
clearly Tf (t) is continuous on Ω. It is also clearly bounded
on Ω. Indeed, for |t− t0| < ε,∣∣∣∣∫ t

t0

(t− s) ds
∣∣∣∣ =

(t− t0)2

2
<

ε2

2
.

Crude estimates on (5) show that the values of |Tf | are
bounded on Ω by

|a| + |b|ε +
ε2

2
(‖p‖Ω + |z|) ‖f‖.

To show that T is a contraction, we have

|Tf (t)− Tg(t)| =∣∣∣∣∫ t

t0

(t− s) (p(s)− z) (f (s)− g(s)) ds

∣∣∣∣
≤ ε2

2
(‖p‖Ω + |z|) ‖f − g‖.

This shows that T is a contraction by our assumption on ε.

We conclude directly from the Contraction Mapping Theo-
rem that T has a unique fixed point f in Y which is seen
from the definition of T to be a solution to (4).
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By Proposition 1, the solution f is twice continuously dif-
ferentiable and solves (2)-(3). Moreover if p is k times con-
tinuously differentiable then f is k + 2 times continuously
differentiable.

Our next task is to extend the solution f to (4) to the
whole real line. This will be done by covering the real line
with intervals Ω corresponding to various different choices
of t0, and solving (4) on these intervals with compatible ini-
tial conditions which ensure that the solution fits together
continuously and differentiably along the real line. It is im-
portant to first establish a general result on the uniqueness
of solutions in order that we only have one choice of how to
extend a solution.

Theorem 2. Suppose that twice differentiable functions f
and g satisfy the equation (2) on open intervals I and J
respectively. Suppose that there exists some point t1 ∈ I∩J
such that

f (t1) = g(t1), f ′(t1) = g′(t1).

Then f = g on I ∩ J .

Proof. Suppose on the contrary, that the solutions f and g
do not agree everywhere on the interval I ∩ J . Let S be the
set of points t in I ∩ J , with t < t1 and f (t) 6= g(t). If
S is non-empty. Then it has a supremum t0 in I ∩ J with
t0 ≤ t1. We claim that

f (t0) = g(t0), f ′(t0) = g′(t0).

Indeed, if t0 = t1 then this holds by assumption, and if
t0 < t1, then it holds by continuity because f = g on (t0, t1].
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Now by Theorem 1, we can pick ε > 0 such that a solution
to (4) with initial data a = g(t0) and b = g′(t0) exists and
is unique. We can moreover shrink ε if necessary so that the
interval Ω = (t0 − ε , t0 + ε) is contained in I ∩ J . Now
by restricting the solutions f and g to Ω, we find that they
both agree with the solution from Theorem 1, and hence they
agree with each other on a neighborhood of t0, contradicting
t0 being the supremum of S. Hence S is empty. A similar
argument shows that the set of points in I ∩ J which are
greater than t1, and where f and g differ is empty, and so
f = g on I ∩ J .

Corollary 2.1. There is at most one solution to (2)-(3) on
any interval containing t0, (including the whole of R).

Proof. This follows immediately from Theorem 2, by taking
I and J to be the interval in question and t1 = t0.

Theorem 3. There is a unique solution to (2)-(3) equivalently
(4), on the whole real line.

Proof. It is enough to show that for every N > 0, there there
exists a unique solution to (2)-(3) on (t0−N , t0 +N). This
proves Theorem 3, for if we want to get a solution f on the
whole of R, to define f (t), we simply select any N > |t− t0|
and define f (t) = fN(t) where fN(t) is the solution of (2)-(3)
on (t0−N , t0+N). This is well defined, because it does not
depend on the choice of N by Theorem 2. This definition
satisfies the conditions (3) at t0, and satisfies the differential
equation (2) at t, which is a local equation only depending
on the values of f on an arbitrarily small neighborhood of t.
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At the moment we can only get the existence of solutions
to (2) with initial conditions (3), on an ε neighborhood of
the fixed point where we specify the initial conditions. We
are going to need to sew together many such solutions, and
we will later select points tj indexed by integers j with 0 <
|j| ≤ J , and solve (2) on each of the intervals (tj−ε , tj+ε)
using Theorem 1. What we need to accomplish this is firstly
to get an ε > 0 which satisfies the conditions of Theorem
1 at all the points tj. This is the reason we restricted our
attention to a bounded interval (t0 −N , t0 + N). Indeed,
the continuous function p(t) on R is uniformly bounded on
each bounded subset of R. Choose ε with 0 < ε < 5 to
satisfy

sup{ |p(t)| : |t− t0| < N + 5} + |z| < 2

ε2
.

There is nothing special about the value 5 in defining ε. It
could be replaced with ε in the condition just above, if we
desired to optimize ε at this point. On the other hand, we
could have limited it by 5 in this way in Theorem 1 in order to
simplify the consideration, hardly altering the result, but we
decided instead to use the slightly sharper condition since
the size of interval on which (5) is a contraction could be
of interest for some applications. Now if we have a point
tj ∈ [t0 −N , t0 + N ], then

ε2

2
(sup{|p(t)| : |t− tj| < ε} + |z|) < 1.

This means that we can apply Theorem 1 to solve (2) on
(tj − ε , tj + ε) for any choice of tj ∈ [t0 − N , t0 + N ],
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with any initial data we care to choose at tj of the form

f (tj) = aj, f ′(tj) = bj.

We now want to specify the values of aj and bj so that the
solutions we obtain this way all join up to form a continuous
and differentiable function on [t0−N , t0 +N ]. We want to
be able to move from one interval to the next, and so we want
tj to be in the preceding interval. This means we simply want
0 < tj − tj−1 < ε, in order to go forwards through positive
values of the index j, and have tj ∈ (tj−1 , tj−1 + ε), to go
backwards as we increase the magnitude of negative values
of the index j, and have tj ∈ (tj+1 − ε , tj+1). We can
accomplish this just by for example setting

tj = t0 + jε/2, |j| ≤ 2N/ε.

It is easy to check that the interval (t0 − N , t0 + N) is
contained in the union of the intervals (tj − ε , tj + ε).

To construct a solution F to (2)-(3) on (t0−N , t0 +N), we
first solve (2)-(3) to get a function F (t) on (t0− ε , t0 + ε).
Next we solve (2) on (t1 − ε , t1 + ε) with the initial data

f (t1) = F (t1), f ′(t1) = F ′(t1).

The solutions f must agree with F on the intersection by
Theorem 2. This enables us to extend F to the union (t0 −
ε , t1 +ε) simply by defining F to equal f at the new points
in its domain. By induction we continue. Once F is defined
on (t0 − ε , tj−1 + ε), we extend it to (t0 − ε , tj + ε) by
solving (2) to get a new function f on (tj− ε , tj + ε), using
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the initial data

f (tj) = F (tj), f ′(tj) = F ′(tj).

Eventually we will have constructed F over (t0 − ε , t0 +
N). We then work backwards in the same fashion, solving
the equation (2) on (tj − ε , tj + ε) with the same initial
conditions as F at tj which are given above, to extend the
solution from (tj−1 − ε , t0 + N) to (tj − ε , t0 + N) as j
decreases from −1 to −J , eventually obtaining a solution F
on (t0 − N , t0 + N). We can alternatively alternate and
extend the solution to the intervals (tj − ε , tj + ε) and
(t−j − ε , t−j + ε) at each step of the induction.

If the function p(t) is uniformly bounded on R, we could
continue this to define F on the whole real line. However,
if p(t) is not uniformly bounded on R and we want to con-
struct the solution on the whole real line we might need to
start reducing the size ε of the intervals on which we extend.
We will be able to achieve the extension in countably many
consecutive steps which is left as an exercise for the reader.

Theorem 4. Suppose that p is a continuous function on
R. Suppose a and b are complex numbers and t0 is a real
number. For each z ∈ C, suppose f (z, t) is the continuous
solution to (2)-(3) or equivalently (4) in the variable t, for t ∈
R. Then f (z, t) is jointly continuous in (z, t) and analytic
in z. Moreover the partial derivatives

∂jDk
t f

∂zj
(z, t)

are all jointly continuous in (z, t), where j is a counting
number, and k is a counting number with k ≤ K + 2, where
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p(t) is K times differentiable on R. If p is real-analytic in t
then so is f (z, t).

Proof. When t is close to t0, the proof of the continuity of
f (z, t) is virtually indistinguishable from the proof of The-
orem 1, except for keeping track of z and its effects on the
constants. It really may not be necessary to set up the proof
of Theorem 1 all over again to do this, but it saves pondering.

For R > 0, let BR be the disc of complex numbers z with
|z| < R. By the continuity of p, we can select ε > 0 such
that such that

sup{ |p(t)| : |t− t0| < ε} + R <
2

ε2
.

The only difference with Theorem 1, is that we have replaced
|z| by R, so that this ε will produce a contraction with uni-
form contraction constant for |z| < R.

Set Ω = (t0 − ε , t0 + ε), and

‖p‖Ω = sup{ |p(t)| : |t− t0| < ε}.

We let Y denote the space of bounded complex valued con-
tinuous functions f on BR × Ω with the sup norm, which is
a complete metric space. For a function f in Y , we define

Tf (z, t) =

a + b(t− t0) +

∫ t

t0

(t− s) (p(s)− z) f (z, s) ds.

This formula is jointly continuous in (z, t). Moreover, |Tf (z, t)|
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is bounded by

|a| + |b|ε +
ε2

2
(‖p‖Ω + R) ‖f‖.

Hence T maps Y to Y . To show that T is a contraction,
|Tf (z, t)− Tg(z, t)| =∣∣∣∣∫ t

t0

(t− s) (p(s)− z) (f (z, s)− g(z, s)) ds

∣∣∣∣
≤ ε2

2
(‖p‖Ω + R) ‖f − g‖.

We conclude directly from the Contraction Mapping Theo-
rem that T has a unique fixed point f in Y which is jointly
continuous in the variables (z, t). For z held constant, we
recognize that fixed points of T are the solutions of (4), equiv-
alently (2)-(3) for t ∈ Ω.

We also note from Proposition 1, that the first derivative of
the solution f with respect to t is

f ′(z, t) = b +

∫ t

t0

(p(s)− z) f (z, s) ds.

It is an exercise in real-analysis-1 to show that this is contin-
uous on BR×(t0−ε , t0 +ε), whenever f (z, t) is continuous
on BR × (t0 − ε , t0 + ε).

The fact that higher t-derivatives of the solution f are con-
tinuous in (z, t) follows from the differential equation

(D2
t f )(z, t) = (p(t)− z) f (z, t).

If we know p is k-times continuously differentiable, by induc-
tion we find that for j ≥ 2,

(Dj
tf )(z, t) = uj(z, t)f (z, t) + vj(z, t)f

′(z, t),
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where uj(z, t) and vj(z) are polynomials of degree j− 1 and
j − 2 in z respectively, and the coefficients of these poly-
nomials are k − j-times and k − j + 1 times continuously
differentiable in t respectively. Theorem 4 thus follows if we
can show that f (z, t) is analytic in z and the z-derivatives
are continuous in (z, t), since the same follows for the first
t-derivative and the higher t-derivatives of f from these ex-
pressions.

Part (b) of The Contraction Mapping Theorem tells us
that the fixed point of the Contraction is the limit of the
iterates T jf0 for any choice of f0 ∈ Y . In particular, in
the current case, we can start the approximation with the
function a+ b(t− t0) and we find that the solution to (2)-(3)
equivalently (4) is

lim
j→∞

T j (a + b(t− t0)) .

From the formula for T , we see that the jth iterate is a
polynomial in z of degree j.

Theorem. A uniformly convergent limit of analytic func-
tions defined on an open subset of the complex plane is an-
alytic.

Proving this is an exercise in complex analysis, for exam-
ple using the Cauchy integral formula which represents an
analytic function inside a disc as a weighted integral of the
function around the boundary circle. It turns out the pleas-
ant bounded integration in the Cauchy integral formula can
easily be switched with taking a uniform limit of analytic
functions, and is also uniform in the variable t.
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We have thus proven that the solution f (z, t) is analytic in
z on BR × Ω. If p(t) is real analytic and we start with
f0(t) = a + b(t − t0), we see that the iterates of T jf0 are
also analytic in t, and so the solution being a uniform limit
of analytic functions is also analytic in t.

Similarly, expressing the z derivatives of the solution as a
Cauchy integral formula around a fixed circle enables us to
see that these derivatives are jointly continuous in (z, t).

So far, we have proven Theorem 5 on BR × Ω where Ω =
(t0− ε , t0 + ε). Now we want to extend this to the whole of
C × R. For this we return to our general considerations of
the solution f (z, a, b, t0, t) which solves (2)-(3), equivalently
(4).

Recall we showed in Theorem 2, that a solution F (z, a, b, t0, t)
to the differential equation (2)-(3), equivalently (4) exists and
is unique for all complex numbers a, b, z and initial point t0.
This solution is unique when its value and derivative is spec-
ified at any point. Setting

a1 = f (z, a, b, t0, t1), b1 = f ′(z, a, b, t0, t1),

we have

f (z, a, b, t0, t1 + t) = f (z, a1 , b1 , t1, t).

We can verify this formula by differentiating both sides with
respect to t and noticing they satisfy (2) in the variable t.
By Theorem 2, we just therefore need to check that both
sides have the same value and derivative at one point, in this
case t = 0. Setting t = 0, we find that the two sides of the
formula agree and both equal a1. Differentiating each side

19



and setting t = 0 both become are b1. Therefore they are
equal. However, the right hand side is continuous in (z, t1),
and analytic in z. Hence so is the left hand side, and thus
(z, a, b, t0, t) is continuous at t = t1, and analytic in z. We
leave it to the reader to collect these details together to verify
that we have now shown that Theorem 4 holds on BR × R,
and since R was arbitrary, it holds on C× R.

Example: The case p = 0, and t0 = 0. If we solve the
equation(

−D2 − z
)
f = 0, f (0) = 1, f ′(0) = 0,

We factorize

(iD +
√
z)(iD −

√
z)f = 0,

However, writing w =
√
z, we have

eiwtiDe−iwt = iD + w,

so the equation becomes

eiwtiDe−iwte−iwtiDeiwt f = 0,

and so
De−2iwtiDeiwt f = 0,

and
e−2iwtiDeiwt f = C0(w),

iDeiwt f = C0(w) exp(2iwt)

and
Deiwt f = C1(w) exp(2iwt)
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eiwt f = C1(w)

∫
e2iwt dt = C1(w)

exp(2iwt)

2iw
+ C2(w).

Thus

f = exp(−iwt)
(
C1(w)

exp(iwt)

2iw
+ C2(w)

)
.

However, we don’t like this apparent singularity at w = 0
because we just proved the function is continuous in (z, t)
and so needs to remain bounded when z = w = 0. If we
think about adjusting the constant to eliminate the pole, the
right hand side becomes

exp(−iwt)
(
C1(w)

exp(2iwt)− 1

2iw
+ C3(w)

)
,

=

(
C1(w)

exp(iwt)− exp(−iwt)
2iw

+ C3(w) exp(−iwt)
)
.

= C1(w)
sinwt

w
+ C3(w) exp(−iwt).

The power series expansion looks like

C1(w)(t + O(t3)) + C3(w)(1 − iwt + ...).

Putting in the initial condition that this should look like

a + bt + O(t2),

we get

c3(w) = a, C1(w) − iwC3(w) = b,

which leads to the solution

a exp(−iwt) + (b + iwa)
sinwt

w
.
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However, from our existence result, this is supposed to be
analytic in w2 and should therefore only involve even powers
of w. We want to take a look at the function with coefficient
a. This is

a

(
exp(−iwt) + iw

sinwt

w

)
= a (exp(−iwt) + i sinwt) .

Indeed,

exp(−iwt) +
exp(iwt) − exp(−iwt)

2
= cos(wt).

Altogether we get

f (w2, a, b, t) = a coswt + b
sinwt

w
,

which is indeed analytic in z = w2, requiring no branch cut
to be well defined.

22


