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The functions we consider will be complex valued functions
on the real line. Denote by D the operation of differentiation
which sends continuously differentiable functions to continu-
ous functions. Let p be a continuous real valued function on
R which has compact support in the interval (0, N'). We are
interested in understanding the space of functions f which
solve the eigenfunction equation

—(D*f)(t) + pO)f(t) = 2f(t), (1)

for all t € R, where z is a complex constant. The equation
can be written as

(-D* +p—2z)f =0
The current goal of studying these solutions f is to be able
to later write down formulas for the resolvent operator

1
(=D + p) —=
where here z denotes multiplication by z. We are aiming to
compute the spectral measure of the opeartor —D? + p.

Exercise 0. Show that if f; and fs are solutions to (1) then
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so are f1+ fy and cfy, where ¢ is any complex number. The
space of solutions is thus a vector space.

To understand solutions to (1), we begin by explicitly solv-
ing (1) in intervals where p vanishes. In these intervals

—(D*)(t) = zf(1),

which can be written in the form (D? + z)f = 0.

Exercise 1. Factorize the operator D? + z and use an
integrating factor and the fundamental theorem of calculus
to show that every twice continuously differentiable function

f with (D* + z)f = 0 has the form
Ae™* 4+ Be 7, (2)
where A and B are complex constants.

Since p is supported on (0, N), we get from Exercise 1,
that any solution f to (1) on the whole real line, will have
the form (2) for ¢ in the interval (—oo, 0], and it will also
have the form (2) for ¢ in the interval [N, c0), although the
pair of coefficients A and B might change.

Our next step is to establish the existence of solutions f on
the real line by using the Picard iteration method. Let’s take
a short detour to mention that the general theory of Picard
integration starts off with a first order differential equation.
It is easy to change a second order equation into a first order
vector equation by rewriting (1) as

o () - Gl (1)
f'(t) pt)—z 0]\ f'(t)
Integrating this between ¢ = t; and a general value of ¢
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changes this into the vector valued integral equation

(#0) = () = L G = o) (7)) »

And the Picard method solves general vector valued first or-
der differential equations. However, we need not work with
this vector valued integral equation because we can work
more easily with the equivalent equation which writes f as
a double integral of its second derivative. Indeed, two appli-
cations of the fundamental theorem of calculus gives us

Ft) = flt) + / 7'(s) ds,

S

fi(s) = fito) + fi(r)dr.

r=t

Then substituting f” = (p — 2z)f and plugging in gives

ﬂw=ﬂm+1;(ﬂm%1[@@—@ﬂwm)w

After changing the order of integration this becomes

ﬂwzﬂm+@4m%wy/Wﬂ@m—Aﬂmw

to

If we want to find a solution to (1) with the initial conditions

f(to) = a, f'(to) = b, (3)

then we can check this is equivalent to finding a function f
satistying the integral equation

ﬂ®=a+bw%w+/@—@@@—@ﬂ$%4®

)

3



[t is pleasing how the differential equation (1) plus the initial
conditions (3) get incorporated into a single integral equation
(4). If this equation fails however and f is just an approxima-
tion to a solution, we can hope to find a better approximation
T f which is given by the right hand side. To fix notation, call
the right hand side T'f, that is for any continuous function

on R, define a new function T'f on R by
t

THE) = a + bt —tg) + / (t = 5) (pls) — =) f(s) ds.

to
Exercise 2. If f is a continuous function on R, then T'f is

a twice continuously differentiable function, and 1" f satisfies
the initial conditions (3).

Now if f and g are continuous functions, let’s estimate the
difference T'f — T'g in terms of f — g. We have

TF() — Tolt) = / (t— 5) (pls) — 2) (f(s) — g(s)) ds.

—0
Exercise 3. For € > 0, write J = J. for the interval of the
real line with center ¢, and radius €, that is

J:<t0—€,to—|—€>:{tit0—8<t<t0—|—€}.
Then
St}p\Tf@)—Tg(t)I < Ce sgplf(S)—9<8)|,

where

t)| +
¢ = wlp] + ||

In particular we see that when C'e < 1, or rather to be
more constructive, if we choose € with 0 < ¢ < 1/C, then
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the operator T' is a contraction of the space of continuous
functions on J. More correctly we ought to say that the
operator T' can be restricted to the space S of continuous
functions f on J with f(¢y) = a, which is a metric space
when it is equipped with the supremum norm, and this re-
striction of I to S is a contraction of .S.

Exercise 4. We say that a continuous function f on the
interval J is a fixed point of T it T'f = f. Such a function
f will satisfy the initial conditions (3) and the differential
equation (1) on the interval J. Starting with any continu-
ous function fy on J, the sequence of functions f; defined
recursively by f;y1 = T'f; will converge uniformly on J to a
continuous function f on J which is a fixed point of T'. In
fact f is the unique solution to (1), (3) on the interval J.

If we start with a solution (2) to (1) on (—o0, ty), we have
shown that we can extend it to the interval (—oo, o+ ¢€)
where € = 1/(||p||c + |2|). However, we can iterate this to
extend the solution to the whole real line. When we get past
t = N, we know the solution settles down to have the form
(2) from then on with new values of the constants A and B.

Exercise 5. Consider the solution to (1) which equals ev*
for t < 0, so that f(0) =1 and f’(0) = iy/z. Show that this

function f(t) = f(,)(t) varies continuously in z.



