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The functions we consider will be complex valued functions
on the real line. Denote by D the operation of differentiation
which sends continuously differentiable functions to continu-
ous functions. Let p be a continuous real valued function on
R which has compact support in the interval (0, N). We are
interested in understanding the space of functions f which
solve the eigenfunction equation

−(D2f )(t) + p(t)f (t) = zf (t), (1)

for all t ∈ R, where z is a complex constant. The equation
can be written as(

−D2 + p − z
)
f = 0.

The current goal of studying these solutions f is to be able
to later write down formulas for the resolvent operator

1

(−D2 + p) − z

where here z denotes multiplication by z. We are aiming to
compute the spectral measure of the opeartor −D2 + p.

Exercise 0. Show that if f1 and f2 are solutions to (1) then
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so are f1 + f2 and cf1, where c is any complex number. The
space of solutions is thus a vector space.

To understand solutions to (1), we begin by explicitly solv-
ing (1) in intervals where p vanishes. In these intervals

−(D2f )(t) = zf (t),

which can be written in the form (D2 + z)f = 0.
Exercise 1. Factorize the operator D2 + z and use an

integrating factor and the fundamental theorem of calculus
to show that every twice continuously differentiable function
f with (D2 + z)f = 0 has the form

A eit
√
z + Be−it

√
z, (2)

where A and B are complex constants.

Since p is supported on (0, N), we get from Exercise 1,
that any solution f to (1) on the whole real line, will have
the form (2) for t in the interval (−∞, 0], and it will also
have the form (2) for t in the interval [N,∞), although the
pair of coefficients A and B might change.

Our next step is to establish the existence of solutions f on
the real line by using the Picard iteration method. Let’s take
a short detour to mention that the general theory of Picard
integration starts off with a first order differential equation.
It is easy to change a second order equation into a first order
vector equation by rewriting (1) as

D

(
f (t)
f ′(t)

)
=

(
0 1

p(t)− z 0

)(
f (t)
f ′(t)

)
Integrating this between t = t0 and a general value of t
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changes this into the vector valued integral equation(
f (t)
f ′(t)

)
=

(
f (t0)
f ′(t0)

)
+

∫ t

s=t0

(
0 1

p(s)− z 0

)(
f (s)
f ′(s)

)
ds

And the Picard method solves general vector valued first or-
der differential equations. However, we need not work with
this vector valued integral equation because we can work
more easily with the equivalent equation which writes f as
a double integral of its second derivative. Indeed, two appli-
cations of the fundamental theorem of calculus gives us

f (t) = f (t0) +

∫ t

s=t0

f ′(s) ds,

f ′(s) = f ′(t0) +

∫ s

r=t0

f ′′(r) dr.

Then substituting f ′′ = (p− z)f and plugging in gives

f (t) = f (t0) +

∫ t

s=t0

(
f ′(t0) +

∫ s

r

(p(s)− z) f (r) dr

)
ds

After changing the order of integration this becomes

f (t) = f (t0) + (t−t0)f ′(t0) +

∫ t

t0

(t−r) (p(r)− z) f (r) dr.

If we want to find a solution to (1) with the initial conditions

f (t0) = a, f ′(t0) = b, (3)

then we can check this is equivalent to finding a function f
satisfying the integral equation

f (t) = a + b(t− t0) +

∫ t

t0

(t− s) (p(s)− z) f (s) ds. (4)
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It is pleasing how the differential equation (1) plus the initial
conditions (3) get incorporated into a single integral equation
(4). If this equation fails however and f is just an approxima-
tion to a solution, we can hope to find a better approximation
Tf which is given by the right hand side. To fix notation, call
the right hand side Tf , that is for any continuous function
on R, define a new function Tf on R by

Tf (t) = a + b(t− t0) +

∫ t

t0

(t− s) (p(s)− z) f (s) ds.

Exercise 2. If f is a continuous function on R, then Tf is
a twice continuously differentiable function, and Tf satisfies
the initial conditions (3).

Now if f and g are continuous functions, let’s estimate the
difference Tf − Tg in terms of f − g. We have

Tf (t) − Tg(t) =

∫ t

t=0

(t− s) (p(s)− z) (f (s)− g(s)) ds.

Exercise 3. For ε > 0, write J = Jε for the interval of the
real line with center t0 and radius ε, that is

J = (t0 − ε , t0 + ε) = { t : t0 − ε < t < t0 + ε}.
Then

sup
J
|Tf (t)− Tg(t)| ≤ C ε sup

J
|f (s)− g(s)|,

where

C =
supR |p(t)| + |z|

2
.

In particular we see that when Cε < 1, or rather to be
more constructive, if we choose ε with 0 < ε < 1/C, then

4



the operator T is a contraction of the space of continuous
functions on J . More correctly we ought to say that the
operator T can be restricted to the space S of continuous
functions f on J with f (t0) = a, which is a metric space
when it is equipped with the supremum norm, and this re-
striction of T to S is a contraction of S.

Exercise 4. We say that a continuous function f on the
interval J is a fixed point of T if Tf = f . Such a function
f will satisfy the initial conditions (3) and the differential
equation (1) on the interval J . Starting with any continu-
ous function f0 on J , the sequence of functions fj defined
recursively by fj+1 = Tfj will converge uniformly on J to a
continuous function f on J which is a fixed point of T . In
fact f is the unique solution to (1), (3) on the interval J .

If we start with a solution (2) to (1) on (−∞, t0), we have
shown that we can extend it to the interval (−∞, t0 + ε)
where ε = 1/(‖p‖∞ + |z|). However, we can iterate this to
extend the solution to the whole real line. When we get past
t = N , we know the solution settles down to have the form
(2) from then on with new values of the constants A and B.

Exercise 5. Consider the solution to (1) which equals eit
√
z

for t < 0, so that f (0) = 1 and f ′(0) = i
√
z. Show that this

function f (t) = f(z)(t) varies continuously in z.
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